分析 由二阶行列式展开式得sinα-2cosα=0,由此利用同角三角函数关系式得到cosα=$±\frac{\sqrt{5}}{5}$,再由正弦函数二倍角公式能求出sin2α.
解答 解:∵$|{\begin{array}{l}{sinα}&{cosα}\\ 2&1\end{array}}|=0$,
∴sinα-2cosα=0,
∴sin2α+cos2α=5cos2α=1,
解得cosα=$±\frac{\sqrt{5}}{5}$,
当cosα=-$\frac{\sqrt{5}}{5}$时,sinα=2cosα=-$\frac{2\sqrt{5}}{5}$,∴sin2α=2sinαcosα=2×(-$\frac{2\sqrt{5}}{5}$)×(-$\frac{\sqrt{5}}{5}$)=$\frac{4}{5}$,
当cosα=$\frac{\sqrt{5}}{5}$时,sinα=2cosα=$\frac{2\sqrt{5}}{5}$,∴sin2α=2sinαcosα=2×$\frac{2\sqrt{5}}{5}$×$\frac{\sqrt{5}}{5}$=$\frac{4}{5}$,
故sin2α=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.
点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意二阶行列式展开式、同角三角函数关系式、二倍角公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{21}}}{7}$ | D. | $\frac{{2\sqrt{21}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 5 | C. | $\frac{5}{3}$ | D. | -$\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p1,p3 | B. | p1,p4 | C. | p2,p3 | D. | p2,p4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com