精英家教网 > 高中数学 > 题目详情
10.椭圆的焦点为F1,F2,椭圆上存在点P使得$∠{F_1}P{F_2}=\frac{2π}{3}$,则椭圆的离心率e的取值范围是(  )
A.$[{\frac{{\sqrt{3}}}{2},1})$B.$[{\frac{1}{2},1})$C.$({0,\frac{{\sqrt{3}}}{2}}]$D.$({0,\frac{1}{2}}]$

分析 先根据椭圆定义得到|PF1|=a+ex1,|PF2|=a-ex1,再利用余弦定理得到余弦定理得cos$\frac{2π}{3}$=-$\frac{1}{2}$=$\frac{(a+{ex}_{1})^{2}+(a-e{x}_{1})^{2}-4{c}^{2}}{2(a+e{x}_{1})(a-e{x}_{1})}$,求出 x12=$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$,利用椭圆的范围列出不等式求出离心率的范围.

解答 解:设,P(x1,y1),F1(-c,0),F2(c,0),c>0,
则|PF1|=a+ex1,|PF2|=a-ex1
在△PF1F2中,由余弦定理得 cos$\frac{2π}{3}$=-$\frac{1}{2}$=$\frac{(a+{ex}_{1})^{2}+(a-e{x}_{1})^{2}-4{c}^{2}}{2(a+e{x}_{1})(a-e{x}_{1})}$,
解得   x12=$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$,.
∵x12∈(0,a2],
∴0≤$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$<a2,
即4c2-3a2≥0.且e2<1
∴e=$\frac{c}{a}$≥$\frac{\sqrt{3}}{2}$.
故椭圆离心率的取范围是 e∈[$\frac{\sqrt{3}}{2}$,1).
故选:A.

点评 本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)={x^2}-\frac{a}{2}lnx$的图象在点$(\frac{1}{2},f(\frac{1}{2}))$处的切线斜率为0.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若$g(x)=f(x)+\frac{1}{2}mx$在区间(1,+∞)上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线2x2-3y2=k(k<0)的焦点坐标是(用k表示)(0,±$\sqrt{-\frac{5k}{6}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线a、b和平面α,下面推论错误的是(  )
A.若a⊥α,b?α,则a⊥bB.若a⊥α,a∥b,则b⊥α
C.若a⊥b,b⊥α,则a∥α或a?αD.若a∥α,b?α,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax+4(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点F为E的左焦点,点P为E上位于第一象限内的点,P关于原点的对称点为Q,且满足|PF|=3|FQ|,若|OP|=b,则E的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+a|x+2|.
(Ⅰ)当a=1时,求不等式f(x)≥5的解集;
(Ⅱ)当a<-1时,若f(x)的图象与x轴围成的三角形面积等于6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{3}$D.$\frac{5}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的左右焦点分别是F1,F2,椭圆上有一点P,∠F1PF2=30°,则三角形F1PF2的面积为$18-9\sqrt{3}$.

查看答案和解析>>

同步练习册答案