精英家教网 > 高中数学 > 题目详情
3.过正方体ABCD-A1B1C1D1的顶点A作直线,使与直线AD1所成的角为30°,且与平面C1D1C所成的角为60°,则这样的直线的条数是(  )
A.1B.2C.3D.4

分析 如图所示,在平面C1D1C内,以点D为圆心,半径为$\frac{\sqrt{3}}{3}$AD画圆,则点A与此圆上的点的连线满足条件.

解答 解:如图所示,在平面C1D1C内,以点D为圆心,半径为$\frac{\sqrt{3}}{3}$AD画圆,
则点A与此圆上的点的连线满足:与平面C1D1C所成的角为60°.
所以满足l与直线AD1所成的角为30°有且只有2条,
故选:B.

点评 本题考查了正方体的性质、空间角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若将函数y=2cos2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后函数的一个零点是(  )
A.($\frac{5}{6}$π,0)B.($\frac{7π}{6}$,0)C.(-$\frac{π}{3}$,0)D.($\frac{π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R),
(1)当a=1时,求f(x)的单调区间
(2)若f(x)在$(0\;,\;\frac{1}{2})$上无零点,求a的最小值
(3)若?x0∈(0,e],?x1≠x2∈(0,e],使得f(xi)=g(x0)成立(i=1,2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若点P(cosα,sinα)在直线y=-3x上,则$tan(α+\frac{π}{4})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.
(1)求男生成绩的中位数及女生成绩的平均值;
(2)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在实数集R上的函数f(x),满足f(x)=f(2-x)=f(x-2),当x∈[0,1]时,f(x)=x•2x.则函数g(x)=f(x)-|lgx|的零点个数为(  )
A.99B.100C.198D.200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对的边分别是a,b,c.若a=3bsinC且cosA=3cosBcosC,则tanA的值为(  )
A.4B.-4C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中A(2,1),B(0,4),C(5,6),则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=3-b,P=lnc,则M,N,P的大小关系是(  )
A.P<N<MB.P<M<NC.M<P<ND.N<P<M

查看答案和解析>>

同步练习册答案