精英家教网 > 高中数学 > 题目详情
5.直线y=kx-2交抛物线y2=8x于A、B两点,若AB中点横坐标为2,则|AB|为(  )
A.$\sqrt{15}$B.$2\sqrt{15}$C.$\sqrt{42}$D.$3\sqrt{15}$

分析 直线y=kx-2代入抛物线y2=8x,利用AB的中点的横坐标为2,结合韦达定理,求出k的值,即可求弦AB的长.

解答 解:直线y=kx-2代入抛物线y2=8x,整理可得k2x2-(4k+8)x+4=0,
设A(x1,y1),B(x2,y2),则
∵AB的中点的横坐标为2,∴x1+x2=$\frac{4k+8}{{k}^{2}}$=4得k=-1或2,
当k=-1时,x2-4x+4=0有两个相等的实数根,不合题意,
当k=2时,|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{5}$•$\sqrt{({{x}_{1}+{x}_{2})}^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{5}$•$\sqrt{16-4}$=2$\sqrt{15}$.
故选:B.

点评 本题考查弦长的求法,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求函数y=cos2x+sinx的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知幂函数f(x)=(k2+k-1)x(2-k)(1+k)在(0,+∞)上单调递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在整数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直角三角形的直角顶点在坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,且一直角边的方程是y=2x,斜边长是5,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过曲线y=$\sqrt{x}$上的点(4,2)的切线方程是(  )
A.x+4y+4=0B.x-4y-4=0C.x-4y+4=0D.x+4y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱锥A-BCD中,AB=BD=CD=1,AD=BC=$\sqrt{2}$,AC=$\sqrt{3}$.
(1)求证:CD⊥平面ABD;
(2)若M为AD中点,求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知斜率为1的直线l过椭圆$\frac{{x}^{2}}{4}$+y2=1的右焦点F交椭圆于A、B两点,
(1)求焦点F的坐标及其离心率 
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,点F为PA的中点.
(Ⅰ)求证:EF∥平面ABCD;
(Ⅱ)求证:平面PAE⊥平面PAD;
(Ⅲ)求三棱锥P-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2分别是椭圆的左右焦点,点B(0,-b)是椭圆C的下顶点,BF1的延长线交椭圆C于点A,点D和点A关于x轴对称.
(1)若BF1=2,点D(-$\frac{8\sqrt{3}}{7}$,-$\frac{1}{7}$),求椭圆的标准方程;
(2)若$\overrightarrow{D{F}_{2}}$•$\overrightarrow{BA}$=0,求椭圆C的离心率e.

查看答案和解析>>

同步练习册答案