精英家教网 > 高中数学 > 题目详情
9.已知幂函数f(x)=(k2+k-1)x(2-k)(1+k)在(0,+∞)上单调递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在整数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5,若存在,求出m的值,若不存在,请说明理由.

分析 (1)由幂函数的定义和单调性,可得(2-k)(1+k)>0,又k2+k-1=1,即可得到k的值和f(x)的解析式;
(2)求出g(x)的解析式,讨论m的符号,结合二次函数的对称轴和区间的关系,运用单调性,解方程可得m的值.

解答 解:(1)∵幂函数f(x)=(k2+k-1)x(2-k)(1+k)在(0,+∞)上单调递增,
可得(2-k)(1+k)>0,解得-1<k<2,
又k2+k-1=1,可得k=-2或1,
即有k=1,幂函数f(x)=x2
(2)由(1)可知:g(x)=-mx2+(2m-1)x+1,
当m=0时,g(x)=1-x在[0,1]递减,
可得g(0)取得最大值,且为1,不成立;
当m<0时,g(x)图象开口向上,最大值在g(0)或g(1)处取得,
而g(0)=1,则g(1)=5,即为m=5,不成立;
当m>0,即-m<0,g(x)=-m(x-$\frac{2m-1}{2m}$)2+$\frac{1+4{m}^{2}}{4m}$.
①当$\frac{2m-1}{2m}$≤0,m>0时,解得0<m≤$\frac{1}{2}$,
则g(x)在[0,1]上单调递减,因此在x=0处取得最大值,
而g(0)=1≠5不符合要求,应舍去;
②当$\frac{2m-1}{2m}$≥1,m>0时,解得m不存在;
③当0<$\frac{2m-1}{2m}$<1,m>0时,解得m>$\frac{1}{2}$,
则g(x)在x=$\frac{2m-1}{2m}$处取得最小值,最大值在x=0或1处取得,
而g(0)=1不符合要求;
由g(1)=5,即m=5,满足m的范围.
综上可知:满足条件的m存在且m=5.

点评 本题考查幂函数的定义和单调性的运用,考查函数的最值的求法,熟练掌握幂函数和二次函数的单调性及分类讨论的思想方法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.给定两个向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,它们的夹角为120°,|$\overrightarrow{{e}_{1}}$|=1,|$\overrightarrow{{e}_{2}}$|=2,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系x0y中,动点A的坐标为(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα-1),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$a.
(Ⅰ)判断动点A的轨迹的形状;
(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,∠BAD=30°,AB=4,AC=2,点D在BC上,且BC=2BD
(1)求BC的长;
(2)求tan(B+60°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.“a≤-1”是“函数f(x)=|(ax-1)x|在区间(0,+∞)上单调递增”的充分不必要条件.
(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知角A,B,C的对边分别为a,b,c,bc=60$\sqrt{3}$,sinA=sinB,面积S=15$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设六边形ABCDEF为正六边形,$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AE}$=$\overrightarrow{n}$,$\overrightarrow{BE}$=$\overrightarrow{n}$-$\overrightarrow{m}$(用$\overrightarrow{m}$,$\overrightarrow{n}$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线y=kx-2交抛物线y2=8x于A、B两点,若AB中点横坐标为2,则|AB|为(  )
A.$\sqrt{15}$B.$2\sqrt{15}$C.$\sqrt{42}$D.$3\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的正视图、侧(左)视图、俯视图如图所示,若该几何体各个顶点在同一个球面上,则该球体的表面积是(  )
A.B.12πC.24πD.32π

查看答案和解析>>

同步练习册答案