精英家教网 > 高中数学 > 题目详情
14.在△ABC中,已知角A,B,C的对边分别为a,b,c,bc=60$\sqrt{3}$,sinA=sinB,面积S=15$\sqrt{3}$,求a的值.

分析 利用面积公式求出A,由A=B可求出C,使用正弦定理得出b,c的关系,代入bc=60$\sqrt{3}$求出b,则a=b.

解答 解:在△ABC中,∵sinA=sinB,∴A=B,a=b.
∵S=$\frac{1}{2}bc$sinA=30$\sqrt{3}$sinA=15$\sqrt{3}$,∴sinA=$\frac{1}{2}$,∴A=30°,B=30°,C=120°.
由正弦定理得$\frac{b}{sinB}=\frac{c}{sinC}$,即$\frac{b}{\frac{1}{2}}=\frac{c}{\frac{\sqrt{3}}{2}}$,∴c=$\sqrt{3}b$.
∵bc=60$\sqrt{3}$,∴b=2$\sqrt{15}$,∴a=2$\sqrt{15}$.

点评 本题考查了正余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{a}$=($\sqrt{3}$,cos2x),$\overrightarrow{b}$=(sin2x,2),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1.
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)求y=f(x)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点F(2,0),直线l:x=-2,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(1)求动点P的轨迹C的方程;
(2)点D在x轴上,且在F点的右侧,点P不在坐标原点,且|$\overrightarrow{FP}$|=|$\overrightarrow{FD}$|,直线m平行于PD,且和曲线C有且只有一个公共点E.
证明直线PE过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(-x2+ax)e-x,若a=2时,求以点P(0,0)为切点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知幂函数f(x)=(k2+k-1)x(2-k)(1+k)在(0,+∞)上单调递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在整数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是(  )
A.锐角三角形B.直角三角形
C.最大角为120°的钝角三角形D.最大角小于120°的钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直角三角形的直角顶点在坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,且一直角边的方程是y=2x,斜边长是5,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱锥A-BCD中,AB=BD=CD=1,AD=BC=$\sqrt{2}$,AC=$\sqrt{3}$.
(1)求证:CD⊥平面ABD;
(2)若M为AD中点,求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示,则该正三棱锥侧视图的面积是(  )
A.$\sqrt{39}$B.6$\sqrt{3}$C.8$\sqrt{3}$D.6

查看答案和解析>>

同步练习册答案