精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{a}$=($\sqrt{3}$,cos2x),$\overrightarrow{b}$=(sin2x,2),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1.
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)求y=f(x)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的最大值和最小值.

分析 (Ⅰ)根据向量的坐标的运算法则和二倍角公式以及角的和差公式化简得到f(x)=2sin(2x+$\frac{π}{6}$),再根据正弦函数的图象和性质即可求出单调减区间.
(Ⅱ)由(Ⅰ)可知,函数y=f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]单调递减,在[-$\frac{π}{6}$,$\frac{π}{6}$)上单调递增,即可求出最值.

解答 解:(Ⅰ)$\overrightarrow{a}$=($\sqrt{3}$,cos2x),$\overrightarrow{b}$=(sin2x,2),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1=$\sqrt{3}$sin2x+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
∴$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z,
故函数y=f(x)的单调递减区间为[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.
(Ⅱ)由(Ⅰ)知,当k=0时,∵f($\frac{π}{6}$)=2,f(-$\frac{π}{6}$)=2sin(-$\frac{π}{6}$)=-1,f($\frac{2π}{3}$)=2sin(π+$\frac{π}{2}$)=-2,
∴y=f(x)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的最大值为2,最小值为-2.

点评 本题考查了向量的数量积运算以及三角函数的化简,以及正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在某次飞镖集训中,甲、乙、丙三人10次飞镖成绩的条形图如下所示,则他们三人中成绩最稳定的是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.假定某运动员每次投掷飞镖正中靶心的概率为0.4,现采用随机模拟的方法估计该运动员两次投掷飞镖两次都命中靶心的概率:先利用计算器产生0到9之间取整数值的随机数,指定2,3,5,7表示命中靶心,1,4,6,8,9,0表示未命中靶心,再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93  28  12  45  85  69  68  34  31  25
73  93  02  75  56  48  87  30  11  35
据此估计,该运动员两次投掷飞镖都正中靶心的概率为(  )
A.0.16B.0.20C.0.35D.0.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=cos3,b=2${\;}^{\frac{1}{3}}$,c=($\frac{1}{3}$)2,那么(  )
A.a<b<cB.c<b<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给定两个向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,它们的夹角为120°,|$\overrightarrow{{e}_{1}}$|=1,|$\overrightarrow{{e}_{2}}$|=2,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)满足f($\frac{x}{2}$)=x+$\frac{1}{x}$.
(1)求函数的解析式;
(2)判断函数f(x)在区间($\frac{1}{2}$,+∞)上的单调性,并用定义法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F为抛物线C:y2=2px(p>0)的焦点,其到直线x=-$\frac{P}{2}$的距离为2.
(1)求抛物线C的标准方程;
(2)若点P在第一象限,且横坐标为4,过点F作直线PF的垂线交直线x=-$\frac{P}{2}$于点Q,证明:直线PQ与抛物线C只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{αn}的前n项和为Sn,a1=0,a1+a2+a3+…+an+n=an+1,n∈N*
(1)求证:数列{an+1}是等比数列;
(2)设数列{bn}的前n和为Tn,b1=1,点(Tn+1,Tn)在直线$\frac{x}{n+1}$-$\frac{y}{n}$=$\frac{1}{2}$上,求$\frac{{b}_{1}}{{a}_{1}+1}$+$\frac{{b}_{2}}{{a}_{2}+1}$+…+$\frac{{b}_{n}}{{a}_{n}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知角A,B,C的对边分别为a,b,c,bc=60$\sqrt{3}$,sinA=sinB,面积S=15$\sqrt{3}$,求a的值.

查看答案和解析>>

同步练习册答案