精英家教网 > 高中数学 > 题目详情
设a是一个平面,Γ是平面α上的一个图形,若在平面α上存在一个定点A和一个定角θ(θ∈(0,2π),使得Γ上的任意一点以A为中心顺时针(或逆时针)旋转角θ,所得到的图形与原图形Γ重合,则称点A为对称中心,θ为旋转角,Γ为旋转对称图形,若以下4个图形,从左至右依次是正三角形、正方形、正五边形、正六边形,它们都是旋转对称图形,则它们的最小旋转角依次为
 
,若Γ是一个正n边形,则其最小旋转角n可以表示为
 

考点:归纳推理
专题:综合题,推理和证明
分析:由题意,对称中心为正多边形的中心,正三角形、正方形、正五边形、正六边形,它们都是旋转对称图形,则它们的最小旋转角依次为
3
4
=
π
2
5
6
=
π
3
;由此可得Γ是一个正n边形的最小旋转角.
解答: 解:由题意,对称中心为正多边形的中心,正三角形、正方形、正五边形、正六边形,它们都是旋转对称图形,则它们的最小旋转角依次为
3
4
=
π
2
5
6
=
π
3
;Γ是一个正n边形,则其最小旋转角n可以表示为
n

故答案为:
3
π
2
5
π
3
n
点评:所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为1,AC∩BD=O,将正方形ABCD沿对角线折起,使AC=1,得到三棱锥A-BCD,如图所示.
(1)求证:AO⊥平面BCD;
(2)求平面ABC与平面BCD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则它的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在某市“创建文明城市”活动中,对800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,据此估计这800名志愿者年龄在[25,30)的人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等腰三角形△ABC中,底边BC=1,底角平分线BD交AC于点D,求BD的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
 
A、100 cm3
B、108 cm3
C、84 cm3
D、92 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M是线段BC的中点,点A在直线BC外,|
BC
|=4,|
AB
+
AC
|=|
AB
-
AC
|
,则
AM
•(
AB
+
AC
)
=(  )
A、8B、4C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1-sin2440°
+
1-2sin80°cos80°

查看答案和解析>>

科目:高中数学 来源: 题型:

某网站有10种资料,下载这些资料需要储值或点数,其中3种资料是精品资料,下载一个需扣5个储值,7种普通资料下载一个需扣4个点.某人现有20个点与10个储值,准备下载6种资料(每种资料至多下载一个,储值只用于下载精品资料,点只用于下载普通资料,点与储值够用即可,不必用完),则不同的下载方法的种数是(  )
A、62B、105
C、168D、231.

查看答案和解析>>

同步练习册答案