精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,则它的体积是
 

考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图,可得该几何体是一个半圆锥和四棱锥的组合体,分别计算出两个锥体的体积,相加可得答案.
解答: 解:由已知中的三视图,可得该几何体是一个半圆锥和四棱锥的组合体,
半圆锥底面半径为1,高为
3
,故体积为:
1
2
×
1
3
×π×12×
3
=
3
6
π

四棱锥底面为边长为2的正方形,高为
3
,故体积为:
1
3
×2×2×
3
=
4
3
3

故该几何体的体积V=
3
6
π
+
4
3
3

故答案为:
3
6
π
+
4
3
3
点评:本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,侧面是正方形,∠DAB=60°,E是棱CB的延长线上一点,经过点A、C1、E的平面交棱BB1于点F,B1F=2BF.
(1)求证:平面AC1E⊥平面BCC1B1
(2)求二面角E-AC1-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

图①是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),并得到频率分布直方图(如图),己知测试平均成绩在区间[30,60)有20人.
(I)求m的值及中位数n;
(Ⅱ)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2asinωxcosωx+2
3
cos2ωx-
3
(a>0,ω>0)的最大值为2,且最小正周期为π.
(I)求函数f(x)的解析式及其对称轴方程;
(II)若f(a)=
4
3
,求sin(4α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在一封闭的正方体容器内装满水,M、N分别是AA1与C1D1的中点,由于某种原因,在D、M、N三点处各有一个小洞,为此容器内存水最多,问应将此容器如何放置?此时水的上表面的形状怎样?

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是一个平面,Γ是平面α上的一个图形,若在平面α上存在一个定点A和一个定角θ(θ∈(0,2π),使得Γ上的任意一点以A为中心顺时针(或逆时针)旋转角θ,所得到的图形与原图形Γ重合,则称点A为对称中心,θ为旋转角,Γ为旋转对称图形,若以下4个图形,从左至右依次是正三角形、正方形、正五边形、正六边形,它们都是旋转对称图形,则它们的最小旋转角依次为
 
,若Γ是一个正n边形,则其最小旋转角n可以表示为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
e1
e2
的夹角为60°,则|2
e1
+3
e2
|=
 

查看答案和解析>>

同步练习册答案