精英家教网 > 高中数学 > 题目详情
12.下列不等式中,与不等式$\frac{x-3}{2-x}$≥0同解的是(  )
A.(x-3)(2-x)≥0B.(x-3)(2-x)>0C.$\frac{2-x}{x-3}$≥0D.$\frac{3-x}{x-2}$≥0

分析 将不等式进行等价变形进行对比即可.

解答 解:不等式$\frac{x-3}{2-x}$≥0等价为$\frac{-(3-x)}{-(x-2)}=\frac{3-x}{x-2}≥0$,
即$\frac{3-x}{x-2}$≥0,
故选:D.

点评 本题主要考查分式不等式的求解和变形,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-2ax+lnx.
(1)若函数f(x)在点(1,f(1))处的切线与直线x-2y+1=0垂直,求a的值;
(2)讨论函数f(x)的单调性;
(3)若不等式2xlnx≥-x2+ax-3在区间(0,e]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.复数z=(2-i)2在复平面内对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知λ、μ∈R,α∈[0,90°],且sin40°(λtan10°+μ)=-1,点P(λ,μ)与坐标原点O间距的最小值是2sinα,则α=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A、B、C的对边分别为a,b,c,且满足bcos2A=a(2-sinAsinB),c=$\sqrt{7}$,cosB=$\frac{2\sqrt{7}}{7}$
(Ⅰ)求sinA;
(Ⅱ)求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π)的图象有一个横坐标为$\frac{π}{3}$的交点,则常数φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)设F(x)=f2(x)+mf(x)(其中常数m≥0),求F(x)的最小值;
(3)若直线l:ax+by+c=0(a,b,c为常数)与f(x)的图象交于不同的两点A、B,与g(x)的图象交于不同的两点C、D,求证:|AC|=|BD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合M={x|y=lg(x2-1)|,N={x|0<x<2},则(∁RM)∩N=(  )
A.{x|-2≤x≤1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的重量(单位:克),整理后得到如下的频率分布直方图(其中重量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515])
(I)若从这40件产品中任取两件,设X为重量超过505克的产品数量,求随机变量X的分布列;
(Ⅱ)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的重量超过505克的概率.

查看答案和解析>>

同步练习册答案