精英家教网 > 高中数学 > 题目详情
1.设全集U=R,集合M={x|y=lg(x2-1)|,N={x|0<x<2},则(∁RM)∩N=(  )
A.{x|-2≤x≤1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}

分析 本题主要考查了集合间的运算,根据运算原则求解即可.

解答 解:M={x|y=lg(x2-1)}={x|x<-1或x>1},
∴∁RM={x|-1≤x≤1},
∴(∁RM)∩N={x|0<x≤1},
故选:B.

点评 本题主要考查集合间的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知一组正数x1、x2、x3、x4的方差s2=$\frac{1}{4}$(x12+x22+x32+x42-16),则数据x1、x2、x3、x4的平均数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列不等式中,与不等式$\frac{x-3}{2-x}$≥0同解的是(  )
A.(x-3)(2-x)≥0B.(x-3)(2-x)>0C.$\frac{2-x}{x-3}$≥0D.$\frac{3-x}{x-2}$≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{a}$-$\overrightarrow{b}$=(-3,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在给定程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正四棱锥O-ABCD的棱长均为1,点A、B、C、D在球O的表面上,延长CO交球面于点S,则四面体A-SOB的体积为$\frac{\sqrt{2}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={1,2},B={x|x-1|≤1},则A∩B等于(  )
A.{-2}B.{1,2}C.{1}D.{-1,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=ln(x-2)+$\sqrt{3-x}$的定义域(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥 A-BCDE中,侧面△ADE为等边三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M为D E的中点,F为AC的中点,且AC=4.
(1)求证:平面 ADE⊥平面BCD;
(2)求证:FB∥平面ADE;
(3)求四棱锥A-BCDE的体积.

查看答案和解析>>

同步练习册答案