精英家教网 > 高中数学 > 题目详情
6.如图,正四棱锥O-ABCD的棱长均为1,点A、B、C、D在球O的表面上,延长CO交球面于点S,则四面体A-SOB的体积为$\frac{\sqrt{2}}{12}$.

分析 假设AC与BD相交于点E,则BE⊥平面SAC,BE=$\frac{\sqrt{2}}{2}$.利用正方体的性质与勾股定理的逆定理可得OA⊥OC,利用四面体A-SOB的体积V=VB-SAO=$\frac{1}{3}$BE•S△SAO.即可得出.

解答 解:假设AC与BD相交于点E,则BE⊥平面SAC,BE=$\frac{\sqrt{2}}{2}$.
连接SA,∵SC是直径,∴SA⊥AC,
∵OA2+OC2=AC2=2,
∴OA⊥OC,
∴又S△SAO=S△OAC=$\frac{1}{2}O{C}^{2}$=$\frac{1}{2}$.
四面体A-SOB的体积V=VB-SAO=$\frac{1}{3}$BE•S△SAO=$\frac{1}{3}×\frac{\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{2}}{12}$.
故答案为:$\frac{\sqrt{2}}{12}$.

点评 本题考查了线面面面垂直的判定性质定理、正方形的性质、正四面体的性质、球的性质、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.把正整数排成如图(a)的三角形数阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形数阵,现将图(b)中的正整数安小到大的顺序构成一个数列{an},若ak=2015,则k=1030.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π)的图象有一个横坐标为$\frac{π}{3}$的交点,则常数φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)等于(  )
A.0.6B.0.4C.0.3D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合M={x|y=lg(x2-1)|,N={x|0<x<2},则(∁RM)∩N=(  )
A.{x|-2≤x≤1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.画出下列函数图象,并标注关键点
(1)在同一平面直角坐标系内绘制f(x)=log2x,f(x)=lgx,f(x)=lnx,f(x)=x四个函数的函数图象;
(2)在同一平面直角坐标系内绘制f(x)=xcosx,f(x)=xsinx两个函数的函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{log_3}x,({0<x<1})\\{2^x},({x≤0})\end{array}$,若f(f(x))=$\frac{1}{4}$,则x=(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.-9D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则下图阴影部分表示的集合是(  )
A.[-1,1)B.(-3,1]C.(-∞,3)∪[-1,+∞)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,△ABC中,AC=BC=$\frac{\sqrt{2}}{2}$AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.
(1)求证:GF∥平面ABC;
(2)求BD与平面EBC所成角的大小;
(3)求几何体EFBC的体积.

查看答案和解析>>

同步练习册答案