精英家教网 > 高中数学 > 题目详情
9.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{a}$-$\overrightarrow{b}$=(-3,-4).

分析 利用向量垂直,数量积为0,得到关于m的方程解之.

解答 解:因为平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
所以且$\overrightarrow{a}$•$\overrightarrow{b}$=4-2m=0,解得m=2;
所以向量$\overrightarrow{a}$-$\overrightarrow{b}$=(1-4,-2-2)=(-3,-4);
故答案为:(-3,-4).

点评 本题考查了向量垂直,数量积等于0以及向量减法的坐标运算;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在复平面内,复数z与$\frac{5}{i-2}$的对应点关于虚轴对称,则z=(  )
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知λ、μ∈R,α∈[0,90°],且sin40°(λtan10°+μ)=-1,点P(λ,μ)与坐标原点O间距的最小值是2sinα,则α=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π)的图象有一个横坐标为$\frac{π}{3}$的交点,则常数φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)设F(x)=f2(x)+mf(x)(其中常数m≥0),求F(x)的最小值;
(3)若直线l:ax+by+c=0(a,b,c为常数)与f(x)的图象交于不同的两点A、B,与g(x)的图象交于不同的两点C、D,求证:|AC|=|BD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)等于(  )
A.0.6B.0.4C.0.3D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合M={x|y=lg(x2-1)|,N={x|0<x<2},则(∁RM)∩N=(  )
A.{x|-2≤x≤1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{log_3}x,({0<x<1})\\{2^x},({x≤0})\end{array}$,若f(f(x))=$\frac{1}{4}$,则x=(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.-9D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据给出的条件解三角形.
已知a=20,b=28,∠A=120°.

查看答案和解析>>

同步练习册答案