精英家教网 > 高中数学 > 题目详情
19.在复平面内,复数z与$\frac{5}{i-2}$的对应点关于虚轴对称,则z=(  )
A.2-iB.-2-iC.2+iD.-2+i

分析 化简复数为a+bi的形式,然后利用对称性求解即可.

解答 解:$\frac{5}{i-2}$=$\frac{5(-2-i)}{(i-2)(-2-i)}$=-2-i.
在复平面内,复数z与$\frac{5}{i-2}$的对应点关于虚轴对称,则z=2-i.
故选:A.

点评 本题考查复数的基本概念,复数的乘除运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知cosα=-$\frac{\sqrt{15}}{4}$,$\frac{α}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),则cos$\frac{α}{2}$-sin$\frac{α}{2}$的值等于-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某省将测试考生的体能成绩纳入高考成绩的一部分,为了了解2014年全市高三学生的体能状况,从本市某校毕业生中随机抽取一个班的男生进行投掷实心铅球(重3kg)测试,成绩在6.9米以上为合格,将测量的数据整理后,分成5组,并画出了频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)内的频数是4.

(1)求这次铅球测试成绩的合格的人数;
(2)若2014年全市参加高考的男生有28000人,请估计体能合格的有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知中心在原点的双曲线C的一个焦点为(0,2),离心率为$\sqrt{3}$
(1)求双曲线C的方程;
(2)若直线l:y=kx-$\sqrt{2}$与双曲线恒有两个不同的交点A和B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>-2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知CD是△ABC的边AB上的高,点E、F、G分别是AD、AC、BD的中点,且CD=DB=2,AE=$\sqrt{2}$现沿EF和CD把△AEF和△BCD折起,使A、B两点重合与点P
(Ⅰ)求证:EG∥平面PFC
(Ⅱ)求平面PEC与平面PFC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足$\overrightarrow{MA}$=$\overrightarrow{AB}$,则t的取值范围是(  )
A.[-2,2]B.[-$\sqrt{5}$,$\sqrt{5}$]C.[-3,3]D.[-5,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一组正数x1、x2、x3、x4的方差s2=$\frac{1}{4}$(x12+x22+x32+x42-16),则数据x1、x2、x3、x4的平均数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-lnx-1,g(x)=$\frac{{x}^{2}}{2}$-mx+mf(x)(m∈R).
(Ⅰ)求曲线y=f(x)在(1,f(1))处的切线方程;
(Ⅱ)求g(x)的单调区间;
(Ⅲ)当1<m<3时,x∈(1,e)求证:g(x)>-$\frac{3}{2}$(1+ln3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{a}$-$\overrightarrow{b}$=(-3,-4).

查看答案和解析>>

同步练习册答案