精英家教网 > 高中数学 > 题目详情
20.已知λ、μ∈R,α∈[0,90°],且sin40°(λtan10°+μ)=-1,点P(λ,μ)与坐标原点O间距的最小值是2sinα,则α=90°.

分析 由已知等式求出$\sqrt{{λ}^{2}+{μ}^{2}}=2$,即点P(λ,μ)与坐标原点O间的距离为2sinα=2,则α的值可求.

解答 解:由sin40°(λtan10°+μ)=-1,得
$sin40°(\frac{λsin10°}{cos10°}+μ)=-1$,即$sin40°\frac{λsin10°+μcos10°}{cos10°}=-1$,
∴$\frac{\sqrt{{λ}^{2}+{μ}^{2}}sin40°sin(10°+θ)}{cos10°}=-1$,
由上可得:$\sqrt{{λ}^{2}+{μ}^{2}}=2$.
即2sinα=2,sinα=1.
又α∈[0,90°],
∴α=90°.
故答案为:90°.

点评 本题考查了三角函数的化简与求值,考查了数学转化思想方法,关键是由已知的三角等式求出点P(λ,μ)与坐标原点O的距离,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某省将测试考生的体能成绩纳入高考成绩的一部分,为了了解2014年全市高三学生的体能状况,从本市某校毕业生中随机抽取一个班的男生进行投掷实心铅球(重3kg)测试,成绩在6.9米以上为合格,将测量的数据整理后,分成5组,并画出了频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)内的频数是4.

(1)求这次铅球测试成绩的合格的人数;
(2)若2014年全市参加高考的男生有28000人,请估计体能合格的有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一组正数x1、x2、x3、x4的方差s2=$\frac{1}{4}$(x12+x22+x32+x42-16),则数据x1、x2、x3、x4的平均数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-lnx-1,g(x)=$\frac{{x}^{2}}{2}$-mx+mf(x)(m∈R).
(Ⅰ)求曲线y=f(x)在(1,f(1))处的切线方程;
(Ⅱ)求g(x)的单调区间;
(Ⅲ)当1<m<3时,x∈(1,e)求证:g(x)>-$\frac{3}{2}$(1+ln3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设$\frac{1+7i}{2-i}$=a+bi(a,b∈R),其中i是虚数单位,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.7个人排成一列,其中甲、乙两人相邻且与丙不相邻的方法种数是960(结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列不等式中,与不等式$\frac{x-3}{2-x}$≥0同解的是(  )
A.(x-3)(2-x)≥0B.(x-3)(2-x)>0C.$\frac{2-x}{x-3}$≥0D.$\frac{3-x}{x-2}$≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{a}$-$\overrightarrow{b}$=(-3,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=ln(x-2)+$\sqrt{3-x}$的定义域(2,3].

查看答案和解析>>

同步练习册答案