分析 先利用导数的几何意义求出k的值,然后利用导数求该函数单调区间及其极值.
解答 解:由函数$f(x)=lnx+\frac{k}{x}(k∈R)$得f′(x)=$\frac{1}{x}$-$\frac{k}{{x}^{2}}$.
∵曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,
∴此切线的斜率为0.
即f′(e)=0,有$\frac{1}{e}$-$\frac{k}{{e}^{2}}$=0,解得k=e.
∴f′(x)=$\frac{1}{x}$-$\frac{e}{{x}^{2}}$=$\frac{x-e}{{x}^{2}}$,
由f′(x)<0得0<x<e,由f′(x)>0得x>e.
∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,
当x=e时f(x)取得极小值f(e)=lne+$\frac{e}{e}$=2.
故答案为:2.
点评 本题考查导数的运用:求切线的斜率和极值,考查导数的几何意义以及两直线垂直的条件,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 成绩分组 | 频数 | 频率 | 平均分 |
| [0,20) | 3 | 0.015 | 16 |
| [20,40) | a | b | 32.1 |
| [40,60) | 25 | 0.125 | 55 |
| [60,80) | c | 0.5 | 74 |
| [80,100] | 62 | 0.31 | 88 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (-2,0) | D. | (-2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 27 | 38 | 30 | 37 | 35 | 31 |
| 乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com