精英家教网 > 高中数学 > 题目详情
15.计算tan54°-tan36°-2tan18°=0.

分析 利用两角和的正切函数化简tan18°=tan(54°-36°),然后代入求解即可.

解答 解:因为tan18°=tan(54°-36°)=$\frac{tan54°-tan36°}{1+tan54°tan36°}$,
所以tan54°-tan36°=tan18°(1+tan54°tan36°)=tan18°(1+tan54°cot54°)=2tan18°
所以tan54°一tan36°一2tan18°=0.
故答案为:0.

点评 本题考查两角和与差的正切函数的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.解不等式:3${A}_{8}^{n}$<4${A}_{9}^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,对于任意n∈N*都有Sn+1-3Sn-1=0.
(1)求{an}的通项公式;
(2)若(bn-n)•an=n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a=2${\;}^{\frac{1}{5}}$,b=5${\;}^{-\frac{1}{2}}$,c=$\frac{1}{2}$${∫}_{0}^{\frac{π}{2}}$cosxdx,则实数a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对边分别为a,b,c,$\frac{sinA}{sinB+sinC}$=1-$\frac{a-b}{a-c}$.
(1)若b=$\sqrt{3}$,求△ABC周长的取值范围;
(2)设$\overrightarrow{m}$=(sinA,1),$\overrightarrow{n}$=(6cosB,cos2A),求$\overrightarrow{m}$•$\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.比较大小:cos125°>cos156°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的单调递增区间
(1)y=sin$\frac{x}{2}$+cos$\frac{x}{2}$x∈(-2π,2π);
(2)y=2sin($\frac{π}{6}$-2x),x∈[0,π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角为A,B,C,向量$\overrightarrow{m}$=(cosA,-sinB),$\overrightarrow{n}$=(cosB,sinA),满足$\overrightarrow{m}$•$\overrightarrow{n}$=cosC.
(1)求证:△ABC是直角三角形;
(2)若AC=$\sqrt{3}$,BC=6,P是△ABC内的一点,且∠APC=∠BPC=120°,设∠PAC=α,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=log2x的定义域为(0,+∞),值域为R,单调递增区间为(0,+∞).

查看答案和解析>>

同步练习册答案