【题目】如图所示将同心圆环均匀分成n(
)格.在内环中固定数字1~n.问能否将数字1~n填入外环格内,使得外环旋转任意格后有且仅有一个格中内外环的数字相同?
![]()
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥S-ABCD中,SD
底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC
平面SBC .
![]()
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右焦点分别是
,抛物线
与椭圆
有相同的焦点,点
为抛物线与椭圆
在第一象限的交点,且满足
.
![]()
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
两点,设
.若
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与直线
相切,圆心在
轴上,且直线
被圆
截得的弦长为
.
(1)求圆
的方程;
(2)过点
作斜率为
的直线
与圆
交于
两点,若直线
与
的斜率乘积为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)c∶a=5∶13,且椭圆上一点到两焦点的距离的和为26.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
是数列
的前
项的和.
(1)求数列
的通项公式;
(2)若
成等差数列,
,18,
成等比数列,求正整数
的值;
(3)是否存在
,使得
为数列
中的项?若存在,求出所有满足条件的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x=
时,四边形MENF的面积最小;
③四边形MENF周长L=f(x),x∈[0,1]是单调函数;
④四棱锥C′﹣MENF的体积V=h(x)为常函数;
以上命题中假命题的序号为( )
![]()
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com