精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的一元二次函数,分别从集合P和Q中随机取一个数a和b得到数对

(1)若,求函数内是偶函数的概率;

(2)若,求函数有零点的概率;

(3)若,求函数在区间上是增函数的概率。

【答案】(1);(2);(3).

【解析】试题分析:(1)写出所有基本事件,分析函数是偶函数所包含的基本事件即可求解;(2)写出所有基本事件,分析函数有零点,即包含的基本事件即可;(3)函数是增函数需要,利用几何概型求解即可。

试题解析:(1)由已知得, ,所有的有序数列有,共有18对,要使是偶函数 ,须有

满足条件的有序数对有共有3对,

(2)由已知得, ,所有的有序数列有,共有18对,要使有零点 ,

满足条件的有序数对有共有6对,

(3)要使单调递增,可看成是平面区域中的所有点,

而满足条件是在平面区域中的所有点,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某奥运会主体育场的简化钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,我们称这两个椭圆相似。

(1)已知椭圆,写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点关于直线对称,求实数的取值范围;

(2)从外层椭圆顶点AB向内层椭圆引切线ACBD,设内层椭圆方程为+=1 (ab0)ACBD的斜率之积为-,求椭圆的离心率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2 +x)+ (sin2x﹣cos2x),x∈[ ].
(1)求 的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为(
A.10
B.8
C.6
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个包装箱内有6件产品,其中4件正品,2件次品。现随机抽出两件产品.(要求罗列出所有的基本事件)

(1)求恰好有一件次品的概率。

(2)求都是正品的概率。

(3)求抽到次品的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.

(1)求证: 平面

(2)求证:平面平面.

(3)若平面,求棱的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+2)x+2<0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面四边形是矩形,平面分别是的中点,.

(1)求证:平面

(2)求二面角的大小;

(3)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

查看答案和解析>>

同步练习册答案