【题目】已知关于x的一元二次函数,分别从集合P和Q中随机取一个数a和b得到数对。
(1)若,,求函数在内是偶函数的概率;
(2)若,,求函数有零点的概率;
(3)若,,求函数在区间上是增函数的概率。
【答案】(1);(2);(3).
【解析】试题分析:(1)写出所有基本事件,分析函数是偶函数所包含的基本事件即可求解;(2)写出所有基本事件,分析函数有零点,即包含的基本事件即可;(3)函数是增函数需要,利用几何概型求解即可。
试题解析:(1)由已知得, ,所有的有序数列有,,,,,,,,,,,,,,,,,,共有18对,要使是偶函数 ,须有
满足条件的有序数对有,,共有3对,.
(2)由已知得, ,所有的有序数列有,,,,,,,,,,,,,,,,,,共有18对,要使有零点 ,
满足条件的有序数对有,,,,,共有6对,.
(3)要使单调递增,即,可看成是平面区域中的所有点,
而满足条件是在平面区域中的所有点,
.
科目:高中数学 来源: 题型:
【题目】某奥运会主体育场的简化钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,我们称这两个椭圆相似。
(1)已知椭圆,写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围;
(2)从外层椭圆顶点A、B向内层椭圆引切线AC、BD,设内层椭圆方程为+=1 (ab0),AC与BD的斜率之积为-,求椭圆的离心率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2( +x)+ (sin2x﹣cos2x),x∈[ , ].
(1)求 的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个包装箱内有6件产品,其中4件正品,2件次品。现随机抽出两件产品.(要求罗列出所有的基本事件)
(1)求恰好有一件次品的概率。
(2)求都是正品的概率。
(3)求抽到次品的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.
(1)求证: 平面;
(2)求证:平面平面.
(3)若平面,求棱的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为元,实验30天共投入实验费用17700元.
(1)求的值及平均每天耗资最少时实验的天数;
(2)现有某知名企业对该项实验进行赞助,实验天共赞助元.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com