精英家教网 > 高中数学 > 题目详情
19.如表是x,y的对应数据,由表中数据得线性回归方程为$\stackrel{∧}{y}$=0.8x-$\stackrel{∧}{a}$.那么,当x=60时,相应的$\stackrel{∧}{y}$为(  )
x1520253035
y612142023
A.38B.43C.48D.52

分析 先计算平均数,利用线性回归方程恒过样本中心点,求出$\stackrel{∧}{a}$=5,即可得到结论.

解答 解:由题意,$\overline{x}$=25,$\overline{y}$=15,
代入$\stackrel{∧}{y}$=0.8x-$\stackrel{∧}{a}$,可得$\stackrel{∧}{a}$=5,
∴x=60时,相应的$\stackrel{∧}{y}$=0.8×60-5=43,
故选B.

点评 本题考查线性回归方程,考查学生的计算能力,利用线性回归方程恒过样本中心点是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;   
(2)求f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A={x||3x-4|>2},$B=\left\{{\left.x\right|\frac{1}{{{x^2}-x-2}}>0}\right\}$,C={x|(x-a)(x-a-1)≥0},p:x∈∁RA,q:x∈∁RB,r:x∈C
(1)p是q的什么条件?
(2)若r是p的必要非充分条件,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+bx+c在x=2处取得极值为c-6,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{2}}}{2}$,上顶点B是抛物线x2=4y的焦点.
(1)求椭圆M的标准方程;
(2)若P、Q是椭圆M上的两个动点,且OP⊥OQ(O是坐标原点),试问:点到直线的距离是否为定值?若是,试求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.5名旅客,安排在3个客房里,每个客房至少安排1名旅客,则不同方法有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x,y满足不等式组$\left\{\begin{array}{l}y-1≥0\\ x-y+2≥0\\ x+4y-8≤0\end{array}\right.$则目标函数z=2x+y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的奇函数f(x)满足f(2+x)=f(2-x),当x∈[0,2)时,f(x)=-4x2+8x.若在区间[a,b]上,存在m(m≥3)个不同的整数x(i=1,2,…,m),满足$\sum_{i=1}^{m=1}{|{f(x)-f({x_{i+1}})}|}≥72$,则b-a的最小值为(  )
A.15B.16C.17D.18

查看答案和解析>>

同步练习册答案