精英家教网 > 高中数学 > 题目详情
如果a>b,给出下列不等式:(1)
1
a
1
b
;(2)a3>b3;(3)a2+1>b2+1;(4)2a>2b.其中成立的不等式有(  )
A、(3)(4)
B、(2)(3)
C、(2)(4)
D、(1)(3)
考点:不等式的基本性质
专题:不等式的解法及应用
分析:(1)取a=2,b=-1,满足a>b,但是
1
a
1
b
不成立;
(2)利用函数f(x)=x3在R上单调递增即可得出;
(3)取a=1,b=-2,满足a>b,但是a2+1>b2+1不成立;
(4)利用指数函数f(x)=2x在R上单调递增即可得出.
解答: 解:(1)取a=2,b=-1,满足a>b,但是
1
a
1
b
不成立;
(2)利用函数f(x)=x3在R上单调递增可得:a3>b3
(3)取a=1,b=-2,满足a>b,但是a2+1>b2+1不成立;
(4)利用指数函数f(x)=2x在R上单调递增可得:2a>2b
其中成立的不等式有(2)(4).
故选:C.
点评:本题考查了指数函数、幂函数的单调性、不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项an=n2(cos2
3
-sin2
3
),其前n项和为Sn,则S60=(  )
A、1840B、1880
C、1960D、1980

查看答案和解析>>

科目:高中数学 来源: 题型:

试验测得四组(x,y)的值为(1,3),(3,2),(4,5),(8,6),则x与y之间的回归直线方程必然经过定点(  )
A、(0,1)
B、(4,4)
C、(3.5,4.5)
D、(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a2+a7=18,则S8等于(  )
A、75B、72C、81D、63

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=xsinx+cosx的导函数是y=f′(x),则f′(
π
2
)=(  )
A、-2B、2C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,前n项和为Sn,若S16-S5=165则a9+a8+a16=(  )
A、90B、-80C、75D、45

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=b2lnx-bx-3(b∈R)的极值点为x=1,f(x)=
1
2
ax2-ax-3
(Ⅰ)求函数g(x)的单调区间,并比较g(x)与g(1)的大小关系;
(Ⅱ)记函数y=F(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x0,y0),使得x0=
x1+x2
2
且曲线C在点M处的切线平行于直线AB,则称函数F(x)均存在“中值相依切线”.试问:函数F(x)=g(x)-f(x)是否存在“中值相依切线”?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(sin(x-
π
6
),sinx),函数f(x)=2
a
b
,g(x)=f(
πx
4
).
(1)求f(x)在[
π
2
,π]上的最值,并求出相应的x的值;
(2)计算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,讨论g(x)在[t,t+2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-4<x<2},B={x|x<-5或x>1},C={x|m-1<x<m+1},m∈R.
(1)求A∩B;
(2)若A∩B⊆C,求实数m的取值范围.

查看答案和解析>>

同步练习册答案