精英家教网 > 高中数学 > 题目详情
4.若函数f(x)为R上的奇函数,且在[0,+∞)上单调递减,又f(sinx-1)>-f(sinx),x∈[0,π],则x的取值范围是(  )
A.($\frac{π}{3}$,$\frac{2π}{3}$)B.[0,$\frac{π}{3}$]∪($\frac{2π}{3}$,π]C.[0,$\frac{π}{6}$)∪($\frac{5π}{6}$,π]D.($\frac{π}{6}$,$\frac{5π}{6}$)

分析 根据题意,由函数奇偶性的性质可得函数f(x)在R上为减函数,进而由f(sinx-1)>-f(sinx)分析可得sinx<$\frac{1}{2}$,结合x的取值范围,分析可得答案.

解答 解:根据题意,函数f(x)为R上的奇函数,且在[0,+∞)上单调递减,
则函数f(x)在(-∞,0]上也为减函数,
即函数f(x)在R上为减函数,
f(sinx-1)>-f(sinx)⇒f(sinx-1)>f(-sinx)⇒sinx-1<-sinx⇒sinx<$\frac{1}{2}$,
又由x∈[0,π],
则有0≤x<$\frac{π}{6}$或$\frac{5π}{6}$<x≤π,即x的取值范围是[0,$\frac{π}{6}$)∪($\frac{5π}{6}$,π];
故选:C.

点评 本题考查函数奇偶性与单调性的综合应用,注意分析函数f(x)在R的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=(1,-3)$.
(1)若$|\overrightarrow c|=2\sqrt{10}$,且$\overrightarrow c∥\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若$|\overrightarrow b|=\sqrt{5}$,且$(\overrightarrow a+\overrightarrow b)$与$(\overrightarrow a-2\overrightarrow b)$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若$f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)若将y=f(x)图象上所有点沿着$\overrightarrow a=(-θ,0)(θ>0)$方向移动得到y=g(x)的图象,若y=g(x)图象的一个对称轴为$x=\frac{5}{6}π$,求θ的最小值;
(3)在第(2)问的前提下,求出函数y=g(x)在$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若随机变量X的概率分布列为(  )
X01
Pp1p2
且p1=$\frac{1}{2}$p2,则p1等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{a-1}{x}-2a,g(x)=-ax-1$,a>0.
(1)设h(x)=f(x)-g(x),若函数h(x)在$({0,\frac{1}{2}})$上是减函数,求实数a的取值范围;
(2)若f(x)≥g(x)+lnx在[1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴.若|F1F2|=12,|PF2|=5则该双曲线的离心率为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(wx+$\frac{π}{3}$)(w>0)的最小正周期为π,则该函数的图象关于(  )对称.
A.点($\frac{π}{3}$,0)B.直线x=$\frac{π}{4}$C.点($\frac{π}{4}$,0)D.直线x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}是首项为4,公差为3的等差数列,数列{bn}满足bn(an$\sqrt{{a}_{n+1}}$+an+1$\sqrt{{a}_{n}}$)=1,则数列{bn}的前20项的和为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的可导函数f(x)的导函数f′(x),满足f′(x)<f(x),且f(x+2)=f(x-2),f(4)=1,则不等式f(x)<ex的解集为(  )
A.(0,+∞)B.(1,+∞)C.(4,+∞)D.(-2,+∞)

查看答案和解析>>

同步练习册答案