已知椭圆
的左、右焦点分别为
,且
,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.
(1)求椭圆方程;
(2)设椭圆与直线
相交于不同的两点M、N,又点
,当
时,求实数m的取值范围,
(1)
.
(2)
时,
的取值范围是
;
时,
的取值范围是![]()
解析试题分析:(1)由已知,可得
,
,
利用
,即得
,
,求得椭圆方程.
(2)应注意讨论
和
的两种情况.
首先当
时,直线和椭圆有两交点只需
;
当
时,设弦
的中点为
分别为点
的横坐标,
联立
,得
,
注意根据
,确定
① 平时解题时,易忽视这一点.
应用韦达定理及中点坐标公式以及
得到
②,
将②代入①得
,解得
, 由②得
,
故所求的
取值范围是
.
试题解析:(1)由已知,可得
,
,
∵
,∴
,
,
∴
. 4分
(2)当
时,直线和椭圆有两交点只需
; 5分
当
时,设弦
的中点为
分别为点
的横坐标,由
,得
,
由于直线与椭圆有两个不同的交点,所以
,即
① 7分
9分
又
②, 10分
将②代入①得
,解得
, 由②得
,
故所求的
取值范围是
. 12分
综上知,
时,
的取值范围是
;
时,
的取值范围是
13分
考点:椭圆的方程,直线与椭圆的位置关系,不等式解法.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点
的轨迹
的方程;
(2)若
是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
两焦点坐标分别为
,
,一个顶点为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在斜率为
的直线
,使直线
与椭圆
交于不同的两点
,满足
. 若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)在直线
:
上取一点
,过点
作轨迹
的两条切线,切点分别为
.问:是否存在点
,使得直线
//
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线
:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.![]()
(1)求抛物线
的方程;
(2)当
的角平分线垂直
轴时,求直线
的斜率;
(3)若直线
在
轴上的截距为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知坐标平面内
:
,
:
.动点P与
外切与
内切.
(1)求动圆心P的轨迹
的方程;
(2)若过D点的斜率为2的直线与曲线
交于两点A、B,求AB的长;
(3)过D的动直线与曲线
交于A、B两点,线段中点为M,求M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左、右焦点,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)过
的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆
的离心率为
,
在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线
相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线
的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线
交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得
始终平分
?若存在求出
点坐标;若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com