精英家教网 > 高中数学 > 题目详情

已知椭圆的左、右焦点分别为,且,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.
(1)求椭圆方程;
(2)设椭圆与直线相交于不同的两点M、N,又点,当时,求实数m的取值范围,

(1).
(2)时,的取值范围是时,的取值范围是

解析试题分析:(1)由已知,可得
利用,即得,求得椭圆方程.
(2)应注意讨论的两种情况.
首先当时,直线和椭圆有两交点只需
时,设弦的中点为分别为点的横坐标,
联立,得,
注意根据,确定   ① 平时解题时,易忽视这一点.
应用韦达定理及中点坐标公式以及 得到 ②,
将②代入①得,解得, 由②得 ,
故所求的取值范围是.
试题解析:(1)由已知,可得
,∴
.                            4分
(2)当时,直线和椭圆有两交点只需;             5分
时,设弦的中点为分别为点的横坐标,由,得
由于直线与椭圆有两个不同的交点,所以
,即   ①                                7分
   9分
 ②, 10分
将②代入①得,解得, 由②得 ,
故所求的取值范围是.                     12分
综上知,时,的取值范围是
时,的取值范围是               13分
考点:椭圆的方程,直线与椭圆的位置关系,不等式解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,动点满足
(1)求动点的轨迹的方程;
(2)在直线上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线轴上的截距为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知坐标平面内.动点P与外切与内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案