精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在(-1,1)上的单调递增函数,解不等式:f(t-1)-f(-t)<0.
考点:函数单调性的性质
专题:计算题,不等式的解法及应用
分析:利用f(x)是定义在(-1,1)上的单调递增函数,可得-1<t-1<-t<1,即可解不等式.
解答: 解:∵f(t-1)-f(-t)<0,
∴f(t-1)<f(-t).
∵f(x)是定义在(-1,1)上的单调递增函数,
∴-1<t-1<-t<1,
∴0<t<
1
2

∴不等式的解集为{t|0<t<
1
2
}.
点评:本题考查的知识点是函数单调性的性质,将已知中的不等式转化为-1<t-1<-t<1,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,且S2=1,S4=3,则S6=(  )
A、5B、7C、9D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2-(sinx+cosx)2,(x∈R)
(1)求函数y的最小正周期和最大值;
(2)求函数y的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
2x2-2x+3
x2-x+1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

旅游公司为4个旅游团提供5条旅游线路,每个旅游团任选其中一条.
(1)求4个旅游团选择互不相同的线路共有多少种方法;
(2)求恰有2条线路被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an=
1
n
(n∈N*).从数列{an}中选出k(k≥3)项并按原顺序组成的新数列记为{bn},并称{bn}为数列{an}的k项子列.例如数列
1
2
1
3
1
5
1
8
为{an}的一个4项子列.
(Ⅰ)试写出数列{an}的一个3项子列,并使其为等差数列;
(Ⅱ)如果{bn}为数列{an}的一个5项子列,且{bn}为等差数列,证明:{bn}的公差d满足-
1
8
<d<0;
(Ⅲ)如果{cn}为数列{an}的一个m(m≥3)项子列,且{cn}为等比数列,证明:c1+c2+c3+…+cm≤2-
1
2m-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?m∈[-1,1],不等式a2-5a-3≤
m2+9
,命题q:?x∈R,使不等式x2+ax+2<0.若“p或q”是真命题,?p是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an=2an-1+n(n≥2且n∈N*),{an}的前n项和为Sn,数列{bn}满足bn=an+n+2.
(l)若a1=1,求S4
(2)试判断数列{bn}是否为等比数列?请说明理由;
(3)若a1=-3,m,n,p∈N*,且m+n=2p.试比较
1
Sm
+
1
Sn
2
Sp
的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知盒中有大小相同的3个红球和t个白球,从盒中一次性取出3个球,取到白球个数的期望为
6
5
,若每次不放回的从盒中取一个球,一直到取出所有白球时停止抽取,则停止抽取时恰好取到两个红球的概率为
 

查看答案和解析>>

同步练习册答案