【题目】近年来大气污染防治工作得到各级部门的重视,某企业在现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后当日产量时,总成本.
(1)求的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
科目:高中数学 来源: 题型:
【题目】随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了岁及以上不足岁的网民共人,调查结果如下:
(1)请完成上面的列联表,并判断在犯错误的概率不超过的前提下,能否认为网民对网络知识付费的态度与年龄有关?
(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取名,若在上述名网民中随机选人,求至少1人支持网络知识付费的概率.
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式ax2+bx+c>0的解集为{x|x<-2或x>4},则对于函数f(x)=ax2+bx+c有( )
A.f(5)<f(2)<f(-1)B.f(2)<f(5)<f(-1)
C.f(-1)<f(2)<f(5)D.f(2)<f(-1)<f(5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若在定义域内存在实数x,满足,其中k为整数,则称函数为定义域上的“k阶局部奇函数”.
(1)已知函数,试判断是否为上的“2阶局部奇函数”?并说明理由;
(2)若是上的“1阶局部奇函数”,求实数m的取值范围;
(3)若,对任意的实数,函数恒为上的“k阶局部奇函数”,求整数k取值的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是(为参数).
(1)求直线l和曲线的普通方程;
(2)设直线l和曲线交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】沃尔玛超市委托某机构调查该超市的顾客使用移动支付的情况.调查人员从年龄在内的顾客中,随机抽取了200人,调查结果如图所示:
(1)为推广移动支付,超市准备对使用移动支付的每位顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试根据上述数据估计,该超市当天应准备多少个环保购物袋?
(2)填写下面列联表,并根据列联表判断是否有的把握认为使用移动支付与年龄有关.
年龄的人数 | 年龄的人数 | 总计 | |
使用移动支付 | |||
不使用移动支付 | |||
总计 |
,其中.
0.050 | 0.010 | 0.001 | /tr>|
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com