精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

【答案】(1) b1=1b2=2b3=4

(2) {bn}是首项为1,公比为2的等比数列.理由见解析.

(3) an=n·2n-1

【解析】分析:(1)根据题中条件所给的数列的递推公式将其化为an+1=分别令n=1n=2,代入上式求得a2=4a3=12,再利用从而求得b1=1,b2=2,b3=4.

(2)利用条件可以得到,从而 可以得出bn+1=2bn这样就可以得到数列{bn}是首项为1,公比为2的等比数列.

(3)借助等比数列的通项公式求得,从而求得an=n·2n-1

详解:(1)由条件可得an+1=

n=1代入得,a2=4a1,而a1=1,所以,a2=4.

n=2代入得,a3=3a2,所以,a3=12.

从而b1=1,b2=2,b3=4.

(2){bn}是首项为1,公比为2的等比数列.

由条件可得bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列.

(3)由(2)可得所以an=n·2n-1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C b0)的左、右顶点分别为A1A2,上、下顶点分别为B2B1O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MN是椭圆C上的两个不同的动点,直线OMON的斜率之积等于,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】辽宁号航母纪念章从2012105日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下:

上市时间

市场价

(1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价与上市时间的变化关系:①;②;③

(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格;

(3)设你选取的函数为,若对任意实数,关于的方程恒有个想异实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高一数学考试后,对分(含分)以上的成绩进行统计,其频率分布直方图如图所示,分数在分的学生人数为人,

(1)求这所学校分数在分的学生人数;

(2)请根据频率发布直方图估计这所学校学生分数在分的学生的平均成绩;

(3)为进“步了解学生的学习情况,按分层抽样方法从分数在分和分的学生中抽出人,从抽出的学生中选出人分别做问卷和问卷,求分的学生做问卷分的学生做问卷的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在每年的3月份,濮阳市政府都会发动市民参与到植树绿化活动中去林业管理部门为了保证树苗的质量都会在植树前对树苗进行检测,现从甲、乙两种树苗中各抽测了株树苗,量出它们的高度如下(单位:厘米),

甲:37,21,31,20,29,19,32,23,25,33;

乙:10,30,47,27,46,14,26,10,44,46.

(1)画出两组数据的茎叶图并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;

(2)设抽测的株甲种树苗高度平均值为,将这株树苗的高度依次输人,按程序框(如图)进行运算,问输出的大小为多少?并说明的统计学意义,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段进行分组.已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,则得到体育成绩的折线图如下:

(1)若体育成绩大于或等于70分的学生为“体育良好”,已知该校高一年级有1000名学生,试估计该校高一年级学生“体育良好”的人数;

(2)用样本估计总体的思想,试估计该校高一年级学生达标测试的平均分;

(3)假设甲、乙、丙三人的体育成绩分别为,且,当三人的体育成绩方差最小时,写出的所有可能取值(不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,

(1)求数列的通项公式;

(2)设 是数列的前项和,求

查看答案和解析>>

同步练习册答案