精英家教网 > 高中数学 > 题目详情
设数列|an|的前n项和为Sn,且a1=4,Sn=nan-
n(n-1)
2
(n∈N*),数列|bn|满足b1=4,且bn=bn-12-(n-2)bn-1-2(n≥2,n∈N*
(1)求数列|an|的通项公式;
(2)求证:bn>an(n≥2,n∈N*);
(3)求证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e
(n≥2,n∈N*)(注:e是自然对数的底数).
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用n≥2时,an=sn-sn-1,两式作差求通项公式;
(2)利用数学归纳法证明即可;
(3)构造函数f(x)=ln(1+x)-x,利用导数证得ln(1+x)<x,故ln(1+
1
bnbn+1
)<
1
bnbn+1
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,裂项求和得ln(1+
1
b2b3
)+ln(1+
1
b3b4
)+…+ln(1+
1
bnbn+1
)<
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
3
-
1
n+2
1
3
,即得结论成立.
解答: 解:(1)当n≥2时,Sn=nan-
n(n-1)
2
(n∈N*),Sn-1=(n-1)an-1-
(n-1)(n-2)
2

可得an=nan-(n-1)an-1-n+1,∴an-an-1=1(n≥2,n∈N*
∴数列{an}是首项为4,公差为1的等差数列,
∴an=n+3
(2)1°当n=2时,b2=
b
2
1
-2=14>a2=5不等式成立;
2°假设当n=k(k≥2,k∈N*)时,不等式成立,即bk>k+3,
那么,当n=k+1时,bk+1=
b
2
k
-(k-1)bk-2=bk(bk-k+1)-2>2bk-2>2(k+1)-2=2k≥k+2,
所以当n=k+1时,不等式也成立;
根据(1°),(2°)可知,当n≥2,n∈N*时,bn>an
(3)设f(x)=ln(1+x)-x,f′(x)=
1
1+x
-1=
-x
1+x
<0,
∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0),∴ln(1+x)<x
∵当n≥2,n∈N*时,
1
bn
1
an
=
1
n+1

∴ln(1+
1
bnbn+1
)<
1
bnbn+1
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴ln(1+
1
b2b3
)+ln(1+
1
b3b4
)+…+ln(1+
1
bnbn+1
)<
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
3
-
1
n+2
1
3

∴(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e
(n≥2,n∈N*).
点评:本题主要考查利用定义判断数列是等差数列及利用数学归纳法证明不等式成立等知识,考查通过构造函数法证明不等式的思想方法,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

试证当n为正整数时,f(n)=32n+2-8n-9能被64整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-2x)•lnx+ax2+2
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)设函数g(x)=f(x)-x-2;
(i)若函数g(x)有且仅有一个零点时,求a的值;
(ii)在(i)的条件下,若e-2<x<e,g(x)≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=ex+x
(1)求曲线在点P(1,f(1))处的切线方程;
(2)若点Q为曲线y=f(x)上到直线y=2x-1距离最近的点,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校为了了解参加该校自主招生考试的男女生数学成绩的情况,按照分层抽样分别抽取了10名男生和5名女生作为样本,他们数学成绩的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ)若该班男女生平均分数相等,求x的值;
(Ⅱ)若规定85分以上为优秀,在该5名女生中随机抽取2名,求至少有一人数学成绩优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+ex,g(x)=ex+
1
2
x2-ax(a∈R)(e=2.71828…是自然对数的底数)
(1)若F(x)=f(x)-g(x),求F(x)的单调区间;
(2)定义:若函数φ(x)在定义域为[m,n](m<n)上的值域为[m,n],则称区间[m,n]为函数φ(x)的“同域区间”,当a=
3
2
时,函数F(x)在区间(0,2)内是否存在“同域区间”?请说明理由;
(3)当a>1时,对于区间(2,3)内任意两个不相等的实数x1,x2都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sinxcosx-cos2x+
1
2

(1)写出f(x)的最小正周期T;
(2)求由y=f(x)(0≤x≤
6
),y=0(0≤x≤
6
),x=
6
(-1≤y≤0)以及x=0(-
1
2
≤y≤0)围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,若an=
(3-a)n-3,(n≤7)
an-6,(n>7)
且数列{an}是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的正视图和俯视图如图所示,其中俯视图是一个圆内切于一个正三角形,则该几何体的侧视图的面积为
 

查看答案和解析>>

同步练习册答案