精英家教网 > 高中数学 > 题目详情
试证当n为正整数时,f(n)=32n+2-8n-9能被64整除.
考点:整除的基本性质
专题:算法和程序框图
分析:证法一:利用数学归纳法即可证明;
证法二:利用二项式定理即可证明.
解答: 证法一:(1)当n=1时,f(1)=64,命题显然成立.
(2)假设当n=k(k∈N*,k≥1)时,f(k)=32k+2-8k-9能被64整除.
当n=k+1时,由于32(k+1)+2-8(k+1)-9
=9(32k+2-8k-9)+9•8k+9•9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),
即f(k+1)=9f(k)+64(k+1),∴n=k+1时命题也成立.
根据(1)、(2)可知,对于任意n∈N*,命题都成立.
证法二:32n+2-8n-9=9(8+1)n-8n-9
=9(8n+
C
1
n
8n-1+…+
C
n-1
n
8+
C
n
n
)
-8n-9
=9(8n+
C
1
n
8n-1
+…+
C
n-2
n
82)+64n
+64n,
∵各项均能被64整除,
∴32n+2-8n-9能被64整除.
点评:本题考查了数学归纳法、二项式定理解决整除问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设α是一个平面,m,n是两条不同的直线,以下命题不正确的是(  )
A、若m∥α,n⊥α,则m⊥n
B、若m∥α,m⊥n,则n⊥α
C、若m⊥α,n⊥α,则m∥n
D、若m⊥α,m∥n,则n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={x∈N|x≤5},A={0,1,2,3},B={0,3,4,5},则B∩(∁UA)=(  )
A、{3}
B、{4,5}
C、{3,4,5}
D、{4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,公差d≠0,a1=2,且a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O是等边三角形ABC的外接圆,点P在劣弧
BC
上,在CP的延长线上取PQ=PB.
(Ⅰ)求证:CQ=AP;
(Ⅱ)当点P是劣弧
BC
的中点时,求S△ABC与S△BPQ的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
.
2cos(x-
π
2
)
sin2x
2cos(x+
π
6
)
.
,(x∈R)
(1)求f(x)的最小正周期及判断函数f(x)的奇偶性;
(2)在△ABC中,f(A)=0,|
AC
|=m,m∈[2,4].若对任意实数t恒有|
AB
-t
AC
|≥|
BC
|,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)在等差数列{an}中,已知d=2,an=11,Sn=35,求a1和n.
(2)在等比数列{an}中,若a1=1,a5=16且q>0,求an和S7

查看答案和解析>>

科目:高中数学 来源: 题型:

设M?N*,正项数列{an}的前项积为Tn,且?k∈M,当n>k时,
Tn+kTn-k
=TnTk都成立.
(1)若M={1},a1=
3
,a2=3
3
,求数列{an}的前n项和;
(2)若M={3,4},a1=
2
,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列|an|的前n项和为Sn,且a1=4,Sn=nan-
n(n-1)
2
(n∈N*),数列|bn|满足b1=4,且bn=bn-12-(n-2)bn-1-2(n≥2,n∈N*
(1)求数列|an|的通项公式;
(2)求证:bn>an(n≥2,n∈N*);
(3)求证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e
(n≥2,n∈N*)(注:e是自然对数的底数).

查看答案和解析>>

同步练习册答案