精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
.
2cos(x-
π
2
)
sin2x
2cos(x+
π
6
)
.
,(x∈R)
(1)求f(x)的最小正周期及判断函数f(x)的奇偶性;
(2)在△ABC中,f(A)=0,|
AC
|=m,m∈[2,4].若对任意实数t恒有|
AB
-t
AC
|≥|
BC
|,求△ABC面积的最大值.
考点:二阶矩阵,三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(1)结合行列式的运算性质和三角函数的公式,得到f(x)=
3
sin(2x+
π
3
)-
3
2
.然后,结合三角函数的周期性和奇偶性的概念求解;
(2)根据任意实数t恒有|
AB
-t
AC
|≥|
BC
|,求解得到BC⊥AC,然后,求解即可.
解答: 解:(1)∵函数f(x)=
.
2cos(x-
π
2
)
sin2x
2cos(x+
π
6
)
.

=2cos(x-
π
2
)cos(x+
π
6
)-2sin2x
=2sinxcos(x+
π
6
)-2sin2x
=
3
sinxcosx-3sin2x
=
3
2
sin2x+
3
2
cos2x-
3
2

=
3
sin(2x+
π
3
)-
3
2

∴f(x)=
3
sin(2x+
π
3
)-
3
2

∴T=
2
=π,
∴f(-x)≠±f(x),
∴函数f(x)为非奇非偶函数;
(2)∵f(A)=0,
∴f(A)=
3
sin(2A+
π
3
)-
3
2
=0.
∴sin(2A+
π
3
)=
3
2

∵0<A<π,
π
3
<2A+
π
3
3

∴2A+
π
3
=
3

∴A=
π
6

∵对任意实数t恒有|
AB
-t
AC
|≥|
BC
|,
∴BC⊥AC,
∵|AB|=
4sin2x
,|AC|=m,
∴BC≤|
AB
-t
AC
|,
∴S△ABC=
1
2
BC•AC≤
8
3
3

∴△ABC面积的最大值
8
3
3
点评:本题重点考查了平面向量的应用、三角恒等变换公式、二倍角公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x,y)的坐标满足条件
y≤3
x+y≥4
x-y≤1
,O是坐标原点,则|OP|的最小值为(  )
A、
10
B、
34
2
C、5
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住多个人,求下列问题中各有多少种不同的住法?
(1)每人随意选择,则所有的入住方法;
(2)第1号房间有1人,第2号房间有3人;
(3)指定的4个房间中各有1人;
(4)恰有1个房间中有2人;
(5)恰有2个房间中各有2人.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(x-
π
6
)+cos(x-
π
6
).
(Ⅰ)当x∈A时,函数f(x)取得最大值或最小值,求集合A;
(Ⅱ)将集合A中x∈(0,+∞)的所有x的值,从小到大排成一数列,记为{an},求数列{an}的通项公式;
(Ⅲ)令bn=
π
2
 
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

试证当n为正整数时,f(n)=32n+2-8n-9能被64整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足:a1=6,an+1=an2+4an+2,(n∈N*
(Ⅰ)设Cn=log2(an+2),求证:{Cn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
1
an-2
-
1
a
2
n
+4an
,数列{bn}的前n项和为Tn,求证:
7
30
≤Tn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:A={x|x2-2x-3<0},q:B={x|x2-2mx+m2-9<0}.
(1)若A∩B=(1,3),求实数m的值;
(2)若?p是?q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

π
4
<α<
4
,0<β<
π
4
且sin(α+
π
4
)=
3
5
,cos(
π
4
+β)=
5
13
,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+ex,g(x)=ex+
1
2
x2-ax(a∈R)(e=2.71828…是自然对数的底数)
(1)若F(x)=f(x)-g(x),求F(x)的单调区间;
(2)定义:若函数φ(x)在定义域为[m,n](m<n)上的值域为[m,n],则称区间[m,n]为函数φ(x)的“同域区间”,当a=
3
2
时,函数F(x)在区间(0,2)内是否存在“同域区间”?请说明理由;
(3)当a>1时,对于区间(2,3)内任意两个不相等的实数x1,x2都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范围.

查看答案和解析>>

同步练习册答案