É躯Êýf£¨x£©=lnx+ex£¬g£¨x£©=ex+
1
2
x2-ax£¨a¡ÊR£©£¨e=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©
£¨1£©ÈôF£¨x£©=f£¨x£©-g£¨x£©£¬ÇóF£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©¶¨Ò壺Èôº¯Êý¦Õ£¨x£©ÔÚ¶¨ÒåÓòΪ[m£¬n]£¨m£¼n£©ÉϵÄÖµÓòΪ[m£¬n]£¬Ôò³ÆÇø¼ä[m£¬n]Ϊº¯Êý¦Õ£¨x£©µÄ¡°Í¬ÓòÇø¼ä¡±£¬µ±a=
3
2
ʱ£¬º¯ÊýF£¨x£©ÔÚÇø¼ä£¨0£¬2£©ÄÚÊÇ·ñ´æÔÚ¡°Í¬ÓòÇø¼ä¡±£¿Çë˵Ã÷ÀíÓÉ£»
£¨3£©µ±a£¾1ʱ£¬¶ÔÓÚÇø¼ä£¨2£¬3£©ÄÚÈÎÒâÁ½¸ö²»ÏàµÈµÄʵÊýx1£¬x2¶¼ÓÐ|f£¨x1£©-f£¨x2£©|£¾|g£¨x1£©-g£¨x2£©|³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®
¿¼µã£ºÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ
רÌ⣺ж¨Òå,µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ
·ÖÎö£º£¨1£©ÀûÓõ¼ÊýÇóº¯ÊýµÄµ¥µ÷Çø¼ä¼´¿É£»
£¨2£©¸ù¾Ý¡°Í¬ÓòÇø¼ä¡±µÄ¶¨ÒåµÃ³ö
F(m)=m
F(n)=n
?·½³Ì2lnx-x2+x=0ÔÚ£¨0£¬2£©ÉÏ´æÔÚÁ½¸öÏàÒìµÄʵ¸ù£¬ÀûÓõ¼ÊýÖ¤Ã÷¼´¿É£»
£¨3£©ÓÉ£¨1£©µÃ|f£¨x1£©-f£¨x2£©|=f£¨x2£©-f£¨x1£©£¬Ôò|f£¨x1£©-f£¨x2£©|£¾|g£¨x1£©-g£¨x2£©|?f£¨x2£©-f£¨x1£©£¾|g£¨x1£©-g£¨x2£©|?f£¨x1£©-f£¨x2£©£¼g£¨x1£©-g£¨x2£©£¼f£¨x2£©-f£¨x1£©£¬¼´f£¨x£©-g£¨x£©ÔÚÇø¼ä£¨2£¬3£©µ¥µ÷µÝÔö£¬f£¨x£©+g£¨x£©ÔÚÇø¼ä£¨2£¬3£©µ¥µ÷µÝÔö£¬¼´[f£¨x£©-g£¨x£©]¡ä¡Ý0ÇÒ[f£¨x£©+g£¨x£©]¡ä¡Ý0£¬ÀûÓõ¼ÊýÁгö²»µÈʽ½âµÃ¼´¿É£®
½â´ð£º ½â£º£¨1£©ÓÉF£¨x£©=f£¨x£©-g£¨x£©µÃF£¨x£©=lnx-
1
2
x2+ax£¬
¡àF¡ä£¨x£©=
1-x2+ax
x
£¬ÓÉÌâÒâ¿ÉµÃF£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
ÁîF¡ä£¨x£©=0⇒x1=
a-
a2+4
2
£¬x2=
a+
a2+4
2
£¬¿ÉµÃx1£¼0£¬x2£¾0£¬
ÁîF¡ä£¨x£©£¾0⇒0£¼x£¼
a+
a2+4
2
£¬¼´º¯ÊýF£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨0£¬
a+
a2+4
2
£©£¬
ÁîF¡ä£¨x£©£¼0⇒x£¾
a+
a2+4
2
£¬¼´º¯ÊýF£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äΪ£¨
a+
a2+4
2
£¬+¡Þ£©£»
£¨2£©µ±a=
3
2
ʱ£¬F£¨x£©=lnx-
1
2
x2+
3
2
x£¬ÉèÆä¶¨ÒåÓòΪ[m£¬n]£¨m£¼n£©£¬¼ÙÉè´æÔÚ¡°Í¬ÓòÇø¼ä¡±£¬ÇÒ¶ÔÓ¦µÄÖµÓòΪ[m£¬n]£¬
ÓÉ£¨1£©¿ÉÖªF£¨x£©ÔÚ£¨0£¬2£©Éϵ¥µ÷µÝÔö£¬¼´ÓÐ
F(m)=m
F(n)=n
lnm-
1
2
m2+
3
2
m=m
lnn-
1
2
n2+
3
2
n=n
£¬
¼°·½³Ìlnx-
1
2
x2+
3
2
x=xÔÚ£¨0£¬2£©ÉÏ´æÔÚÁ½¸öÏàÒìµÄʵ¸ù£¬
¼´·½³Ì2lnx-x2+x=0ÔÚ£¨0£¬2£©ÉÏ´æÔÚÁ½¸öÏàÒìµÄʵ¸ù£¬
ÁîT£¨x£©=2lnx-x2+x£¬ÔòT¡ä£¨x£©=
2
x
-2x+1£¬Áî¦Õ£¨x£©=T¡ä£¨x£©=
2
x
-2x+1£¬Ôò¦Õ¡ä£¨x£©=-
2
x2
-2£¬¼´¦Õ¡ä£¨x£©£¼0ºã³ÉÁ¢£¬
¡àº¯Êý¦Õ£¨x£©ÔÚ£¨0£¬2£©Éϵ¥µ÷µÝ¼õ£¬ÇÒ¦Õ£¨e-1£©¨T2e+1-
2
e
£¾0£¬¦Õ£¨2£©=-2£¼0£¬
¼´ÔÚÇø¼ä£¨
1
e
£¬2£©ÉϱشæÔÚΨһµÄµãx0¡Ê£¨
1
e
£¬2£©£¬Ê¹µÃ¦Õ£¨x0£©=0£¬
µ±x¡Ê£¨
1
e
£¬x0£©Ê±£¬¦Õ¡ä£¨x£©£¾0¼´T£¨x£©ÔÚ£¨
1
e
£¬2£©Éϵ¥µ÷µÝÔö£»
µ±x¡Ê£¨x0£¬2£©Ê±£¬¦Õ¡ä£¨x£©£¼00¼´T£¨x£©ÔÚ£¨x0£¬2£©Éϵ¥µ÷µÝ¼õ£»
ÓÖT£¨
1
e
£©=
e(-2e+1)-1
e2
£¼0£¬¦Õ£¨1£©=1£¾0£¬¡àx0£¾1£¬¼´T£¨x£©ÔÚ£¨1£¬x0£©µ¥µ÷µÝÔö£¬
T£¨x0£©£¾T£¨1£©=0£¬T£¨2£©=2ln2-4+2=2ln2-2=2£¨ln2-1£©£¼0£¬
¡àº¯ÊýT£¨x£©=2lnx-x2+xÔÚÇø¼ä£¨
1
e
£¬2£©ÓÐÁ½¸ö²»ÏàµÈµÄ½â£¬
¼´·½³Ì2lnx-x2+x=0ÔÚ£¨0£¬2£©ÉÏ´æÔÚÁ½¸öÏàÒìµÄʵ¸ù£¬
¹Êº¯ÊýF£¨x£©ÔÚ£¨0£¬2£©ÉÏ´æÔÚ¡°Í¬ÓòÇø¼ä¡±£»
£¨3£©²»·ÁÉè2£¼x1£¼x2£¼3£¬ÓÉÌâÒâµÃf£¨x£©=lnx+exÔÚÇø¼ä£¨2£¬3£©µ¥µ÷µÝÔö£¬
ÔòÓÐ|f£¨x1£©-f£¨x2£©|=f£¨x2£©-f£¨x1£©£¬
¡à|f£¨x1£©-f£¨x2£©|£¾|g£¨x1£©-g£¨x2£©|?f£¨x2£©-f£¨x1£©£¾|g£¨x1£©-g£¨x2£©|
?f£¨x1£©-f£¨x2£©£¼g£¨x1£©-g£¨x2£©£¼f£¨x2£©-f£¨x1£©£¬
¼´f£¨x1£©-g£¨x1£©£¼f£¨x2£©-g£¨x2£©ÇÒf£¨x1£©+g£¨x1£©£¼f£¨x2£©+g£¨x2£©ºã³ÉÁ¢£¬
¹Êf£¨x£©-g£¨x£©ÔÚÇø¼ä£¨2£¬3£©µ¥µ÷µÝÔö£¬f£¨x£©+g£¨x£©ÔÚÇø¼ä£¨2£¬3£©µ¥µ÷µÝÔö£¬
¼´[f£¨x£©-g£¨x£©]¡ä¡Ý0ÇÒ[f£¨x£©+g£¨x£©]¡ä¡Ý0£¬
¡àÃüÌâת»¯ÎªÔÚÌõ¼þx¡Ê£¨2£¬3£©ÏÂÓÐ
1
x
-x+a¡Ý0
1
x
+2ex+x-a¡Ý0
ºã³ÉÁ¢£¬¼´
a¡Ýx-
1
x
a¡Üx+
1
x
+2ex
8
3
¡Üa¡Ü
5
2
+2e2£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÅжϺ¯ÊýµÄµ¥µ÷ÐÔÇóµ¥µ÷Çø¼ä¼°Ð¸ÅÄîÌâ¡¢ºã³ÉÁ¢ÎÊÌâµÄ½â¾öÄÜÁ¦£¬¿¼²é»®¹é˼Ïë¡¢·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓÃÄÜÁ¦£¬×ÛºÏÐÔÂß¼­ÐÔÇ¿£¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
.
2cos(x-
¦Ð
2
)
sin2x
2cos(x+
¦Ð
6
)
.
£¬£¨x¡ÊR£©
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ¼°ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£»
£¨2£©ÔÚ¡÷ABCÖУ¬f£¨A£©=0£¬|
AC
|=m£¬m¡Ê[2£¬4]£®Èô¶ÔÈÎÒâʵÊýtºãÓÐ|
AB
-t
AC
|¡Ý|
BC
|£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Êǹ«²î´óÓÚ0µÄµÈ²îÊýÁУ¬ÇÒa1=2£¬a3=a22-10£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁÐ{bn}ÊÇÒÔº¯Êýf£¨x£©=4sin2¦ÐxµÄ×îСÕýÖÜÆÚΪÊ×ÏÒÔf£¨
1
3
£©Îª¹«±ÈµÄµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an-bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2cosxcos£¨
¦Ð
6
-x£©-
3
sin2x+sinxcosx£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷ÔöÇø¼ä£»
£¨2£©Éèx¡Ê[-
¦Ð
3
£¬
¦Ð
2
]£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ|an|µÄǰnÏîºÍΪSn£¬ÇÒa1=4£¬Sn=nan-
n(n-1)
2
£¨n¡ÊN*£©£¬ÊýÁÐ|bn|Âú×ãb1=4£¬ÇÒbn=bn-12-£¨n-2£©bn-1-2£¨n¡Ý2£¬n¡ÊN*£©
£¨1£©ÇóÊýÁÐ|an|µÄͨÏʽ£»
£¨2£©ÇóÖ¤£ºbn£¾an£¨n¡Ý2£¬n¡ÊN*£©£»
£¨3£©ÇóÖ¤£º£¨1+
1
b2b3
£©£¨1+
1
b3b4
£©£¨1+
1
b4b5
£©¡­£¨1+
1
bnbn+1
£©£¼
3e
£¨n¡Ý2£¬n¡ÊN*£©£¨×¢£ºeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬AÊÇÒÔBCΪֱ¾¶µÄ¡ÑOÉÏÒ»µã£¬AD¡ÍBCÓÚµãD£¬¹ýµãB×÷¡ÑOµÄÇÐÏߣ¬ÓëCAµÄÑÓ³¤ÏßÏཻÓÚµãE£¬GÊÇADµÄÖе㣬Á¬½áCG²¢ÑÓ³¤ÓëBEÏཻÓÚµãF£¬ÑÓ³¤AFÓëCBµÄÑÓ³¤ÏßÏཻÓÚµãP£®
£¨1£©ÇóÖ¤£ºBF=EF£»
£¨2£©ÈôPB=BC=3
2
£¬ÇóPAµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÈñ½ÇÈý½ÇÐÎABCÖУ¬BC=1£¬AB=
2
£¬sin£¨A+C£©=
14
4
£¬
£¨¢ñ£©ÇóACµÄÖµ£»
£¨¢ò£©Çósin£¨2A-
¦Ð
3
£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ô²£¨x+1£©2+£¨y-1£©2=8¹ØÓÚÔ­µã¶Ô³ÆµÄÔ²µÄ·½³ÌÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾµÄÍø¸ñÊDZ߳¤Îª1µÄСÕý·½ÐΣ¬ÔÚÆäÉÏÓôÖÏß»­³öÁËij¶àÃæÌåµÄÈýÊÓͼ£¬Ôò¸Ã¶àÃæÌåµÄÈ«Ãæ»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸