精英家教网 > 高中数学 > 题目详情
12.在复数范围内,纯虚数i的三个立方根为-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.

分析 设出z=x+yi(x,y∈R),由题意可得(x+yi)3=i,展开等式左边后利用复数相等的条件列式求得x,y的值,则答案可求.

解答 解:设z=x+yi(x,y∈R),
由z3=i,得(x+yi)3=i,
即x3+3x2yi-3xy2-y3i=i,
∴$\left\{\begin{array}{l}{{x}^{3}-3x{y}^{2}=0①}\\{3{x}^{2}y-{y}^{3}=1②}\end{array}\right.$,
由①得,x=0或x2-3y2=0,
把x=0代入②,解得y=-1;
把x2-3y2=0代入②,得$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$.
∴纯虚数i的三个立方根为:-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.
故答案为:-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知直线l1:x-my+2=0,直线l2的方向向量$\overrightarrow{a}$=(-1,-2),若l1⊥l2,则m的值为(  )
A.-$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$f(x)={({\frac{3}{2}})^x},0<x<1$,则有(  )
A.f(x)>1B.0<f(x)<1C.$1<f(x)<\frac{3}{2}$D.$0<f(x)<\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\sqrt{{{log}_{\frac{3}{4}}}(3x-1)}$的定义域是(  )
A.[1,3]B.$({-∞,\frac{1}{3}}]$C.$({\frac{1}{3},\frac{2}{3}}]$D.$({\frac{2}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值.
(1)${({2\frac{7}{9}})^{\frac{1}{2}}}-{({2\sqrt{3}-π})^0}-{({2\frac{10}{27}})^{-\frac{2}{3}}}+{0.25^{-\frac{3}{2}}}$;
(2)${log_{2.5}}6.25+lg5+ln\sqrt{e}+{2^{-1+{{log}_2}3}}+{(lg2)^2}+lg5•lg2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题,其中是假命题的是(  )
A.不存在无穷多个角α和β,使得sin(α+β)=sinαcosβ-cosαsinβ
B.存在这样的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
C.对任意角α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D.不存在这样的角α和β,使得sin(α+β)≠sinαcosβ+cosαsinβ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=f(x)是奇函数,当x≥0时,f(x)=3x-1,则f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,点A是过F2且倾斜角为$\frac{π}{4}$的直线与双曲线的一个交点,若△F1F2A为等腰直角三角形,则双曲线的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{3}+1$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)求函数$y=sin(\frac{π}{3}-2x)$,x∈[-π,π]的单调递减区间;
(2)求函数$y=3tan(\frac{π}{6}-\frac{x}{4})$的周期及单调区间.

查看答案和解析>>

同步练习册答案