已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调区间;
(2)若g(x)=f(x)+
在[1,+∞)上是单调函数,求实数a的取值范围.
解 (1)由已知,函数的定义域为(0,+∞).
当a=-2时,f(x)=x2-2lnx,
所以f′(x)=2x-
=
,
则当x∈(0,1)时,f′(x)<0,
所以(0,1)为f(x)的单调递减区间.
当x∈(1,+∞)时,f′(x)>0,(1,+∞)为f(x)的单调递增区间.
(2)由题意得g′(x)=2x+
-
,函数g(x)在[1,+∞)上是单调函数.
(ⅰ)若函数g(x)为[1,+∞)上的单调增函数,
则g′(x)≥0在[1,+∞)上恒成立,
即a≥
-2x2在[1,+∞)上恒成立,
设φ(x)=
-2x2,因为φ(x)在[1,+∞]上单调递减,
所以φ(x)max=φ(1)=0,所以a≥0.
(ⅱ)若函数g(x)为[1,+∞)上的单调减函数,
则g′(x)≤0在[1,+∞)上恒成立,不可能.
综上,实数a的取值范围是[0,+∞).
科目:高中数学 来源: 题型:
设函数f(x)=log4(4x+1)+ax(a∈R):
(1)若函数f(x)是定义在R上的偶函数,求a的值;
(2)若不等式f(x)+f(-x)≥mt+m对任意x∈R,t∈[-2,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y(万元)与处理量x(吨)之间的函数关系可近似的表示为y=x2-50x+900,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.
(1)当x∈[10,15]时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com