精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为6.
(Ⅰ)求椭圆的方程;
(Ⅱ)若圆O是以F1、F2为直径的圆,直线l:y=kx+m与圆O相切,并与椭圆C交于不同的两点A,B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求m2+k2的值.

分析 (Ⅰ)由题意可知:由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,三角形周长l=2a+2c=6,即可求得a和c的值,b2=a2-c2,即可求得椭圆的方程;
(Ⅱ)由直线l与圆O相切,得$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=1,即m2=1+k2,将直线方程代入椭圆方程,由韦达定理,及向量数量积的坐标运算,x1•x2+y1y2=$\frac{7{m}^{2}-12{k}^{2}-12}{3+4{k}^{2}}$,代入即可求得$\frac{-5-5{k}^{2}}{3+4{k}^{2}}$=-$\frac{3}{2}$,即可求得m2,k2的值,即可求得m2+k2的值.

解答 解:(I)由椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,
则a=2c…(1分)
又三角形周长l=2a+2c=6,解得:a=2,c=1,
由b2=a2-c2=4-1=3,…(2分)
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;…(4分)
(II)由直线l与圆O相切,得$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=1,即m2=1+k2,…(5分)
设A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去,整理得(3+4k2)x2+8kmx+4m2-12=0,…(6分)
由题意可知圆O在椭圆内,所以直线必与椭圆相交,
∴x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$…(7分)
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=k2•$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+km(-$\frac{8km}{3+4{k}^{2}}$ )+m2
=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$,…(8分)
x1•x2+y1y2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$=$\frac{7{m}^{2}-12{k}^{2}-12}{3+4{k}^{2}}$,…(9分)
因为m2=1+k2
∴x1•x2+y1y2=$\frac{-5-5{k}^{2}}{3+4{k}^{2}}$,…(10分)
又因为$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1y2=-$\frac{3}{2}$,
∴$\frac{-5-5{k}^{2}}{3+4{k}^{2}}$=-$\frac{3}{2}$,解得:k2=$\frac{1}{2}$,…(11分)
m2=1+k2=$\frac{3}{2}$,
m2+k2=2,
∴m2+k2的值2.…(12分)

点评 本题考查椭圆椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,点到直线的距离公式及向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设x,y∈R,向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(1,y),$\overrightarrow{c}$=(2,-6),且$\overrightarrow{a}$⊥$\overrightarrow{c}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(1,0,0),B(0,1,0),C(0,0,1)三点,向量$\overrightarrow{n}$=(1,1,1),试判断以$\overrightarrow{n}$为方向向量的直线l与平面ABC的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某商店老板设计了如下有奖游戏方案:顾客只要花10元钱,即可参加有奖游戏一次.游戏规则如下:棋子从点M开始沿箭头方向跳向N,每次只跳一步(即一个箭头),当下一步有方向选择时,跳的方法必须通过投掷骰子决定,方案如下:当掷出的点数为1时,沿$\overrightarrow{MD}$方向跳一步;当掷出的点数为2,4,6时,沿$\overrightarrow{ME}$方向跳一步;当掷出的点数为3,5时,沿$\overrightarrow{MA}$方向跳一步;奖励标准如表:
从M到N用的步数234
奖励金额(元)100105
若该店平均每天有200人参加游戏,按每月30天计算.则该店开展此游戏每月获利的期望(均值)为2083元
(精确到1元)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+lnx.a∈R
(1)若函数f(x)在x∈(0,e]上的最大值为-3;求a的值;
(2)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正项等比数列{an}满足a7=a6+2a5.若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知Sn为等比数列{an}的前n项和,且a1=8,S3+3a4=S5
(1)求数列{an}的通项公式;
(2)若bn=log2(an•an+1),cn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,记数列{bn}与{cn}的前n项和分别为Pn,Qn,求Pn与Qn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组方程中,表示相同曲线的一组方程是(  )
A.$y=\sqrt{x}$与y2=xB.y=x与$\frac{x}{y}=1$C.y2-x2=0与|y|=|x|D.y=x0与y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}中,S2=1,S5=-5.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=-35,求k的值.

查看答案和解析>>

同步练习册答案