【题目】已知集合A={x|x2﹣4x﹣5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.
【答案】
(1)解:a=﹣1时,集合A={x|x2﹣4x﹣5≥0}={x|x≤﹣1或x≥5},
集合B={x|2a≤x≤a+2}={x|﹣2≤x≤1},
∴A∩B={x|﹣2≤x≤﹣1},
A∪B={x|x≤1或x≥5}
(2)解:∵A∩B=B,∴BA,
当B=时,2a>a+2,解得a>2;
当B≠时, 或 ,
解得a≤﹣3.
综上,a>2或a≤﹣3
【解析】(1)由此能求出集合A={x|x2﹣4x﹣5≥0}={x|x≤﹣1或x≥5},从而能求出A∩B和A∪B.(2)由A∩B=B,得BA,由此能求出实数a的取值范围.
【考点精析】本题主要考查了集合的交集运算的相关知识点,需要掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的一个长轴顶点为A(2,0),离心率为 ,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,
(Ⅰ)求椭圆C的方程;
(Ⅱ)当△AMN的面积为 时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且.直线与轴、轴分别交于,两点.设直线,的斜率分别为,,证明存在常数使得,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线过点,其参数方程为(为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)已知曲线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= (x>0),数列{an}满足 (n∈N* , 且n≥2).
(1)求数列{an}的通项公式;
(2)设Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n﹣1anan+1 , 若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(3)是否存在以a1为首项,公比为q(0<q<5,q∈N*)的数列{a },k∈N* , 使得数列{a }中每一项都是数列{an}中不同的项,若存在,求出所有满足条件的数列{nk}的通项公式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:x∈R,ax2+ax﹣1<0,命题q: +1<0.
(1)若“p或q”为假命题,求实数a的取值范围;
(2)若“非q”是“α∈[m,m+1]”的必要不充分条件,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com