精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.

1)求ab的值;

2)若对任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范围.

【答案】1a2b1.2

【解析】试题分析:(1)由函数是奇函数可得,将代入两个特殊值得到关于的方程组求解其值;(2)首先利用定义法判断函数的单调性,利用奇函数将不等式变形为fx2-x< f-2x2+t),,利用单调性得到关于的恒成立不等式,分离参数后通过求函数最值得到的取值范围

试题解析:(1fx)是奇函数且0Rf0=0

又由f1=-f-1)知 a=2

fx=

2)证明设x1,x2-∞,+∞)且x1<x2

·

y=2x在(-∞,+∞)上为增函数且x1<x2

y=2x>0恒成立,

∴fx1-fx2>0 fx1>fx2

∴fx)在(-∞,+∞)上为减函数

∵fx)是奇函数fx2-x+f2x2-t<0等价于fx2-x<-f2x2-t=f-2x2+t

∵fx)是减函数,∴x2-x>-2x2+t

即一切x∈R3x2-x-t>0恒成立

∴△=1+12t<0,即t<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】7人站成一排.(写出必要的过程,结果用数字作答)

(1)甲、乙两人相邻的排法有多少种?

(2)甲、乙两人不相邻的排法有多少种?

(3)甲、乙、丙三人两两不相邻的排法有多少种?

(4)甲、乙、丙三人至多两人不相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的重心,.

1求证:平面

2若侧面底面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)若,过点的直线交曲线两点,且,求直线的方程;

(2)若曲线表示圆时,已知圆与圆交于两点,若弦所在的直线方程为 为圆的直径,且圆过原点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,设倾斜角为的直线的参数方程为为参数)与曲线为参数)相交于不同的两点

(1)若,求线段的中点的直角坐标;

(2)若直线的斜率为2,且过已知点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中, 分别为的中点.

(1)求证: //平面

(2)若中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)当时,求在区间上的最值;

(2)讨论的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1若函数有且只有一个极值点,求实数的取值范围;

2对于函数,若对于区间上的任意一个,都有,则称函数是函数在区间上的一个分界函数.已知,问是否存在实数,使得函数是函数在区间上的一个分界函数?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,且上单调递增,求实数的取值范围

2)是否存在实数,使得函数上的最小值为?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案