分析 由已知得a3,a7是方程x2-20x+64=0的两个根,且a3<a7,从而求出a3=4,a7=16,再由等比数列通项公式列方程组求出首项和公比,由此能求出a11.
解答 解:∵单调递增的等比数列{an}中,
a1•a9=64,a3+a7=20,
∴a3•a7=a1•a9=64,
∴a3,a7是方程x2-20x+64=0的两个根,且a3<a7,
解方程x2-20x+64=0,
得a3=4,a7=16,
∴$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=4}\\{{a}_{1}{q}^{6}=16}\end{array}\right.$,解得${a}_{1}=2,q=\sqrt{2}$,
∴a11=a1q10=2×($\sqrt{2}$)10=64.
故答案为:64.
点评 本题考查等比数列的第11项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(-2,2) | D. | (0,2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {5} | B. | {0,3} | C. | {0,2,3,5} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1125$\sqrt{2}$π | B. | 3375$\sqrt{2}$π | C. | 450π | D. | 900π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | β内必存在直线与m平行,存在直线与m垂直 | |
| B. | β内必不存在直线与m平行,必存在直线与m垂直 | |
| C. | β内必不存在直线与m平行,且不存在直线与m垂直 | |
| D. | β内必存在直线与m平行,不存在直线与m垂直 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com