6£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}x=12cos¦È\\ y=4sin¦È\end{array}\right.$£¨²ÎÊý¦È¡ÊR£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µãQµÄ¼«×ø±êΪ$£¨4\sqrt{2}£¬\frac{¦Ð}{4}£©$£®
£¨1£©½«ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Çó³öµãQµÄÖ±½Ç×ø±ê£»
£¨2£©ÉèPΪÇúÏßC1Éϵĵ㣬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÀûÓü«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯µÄ·½·¨£¬¿ÉµÃ½áÂÛ£»
£¨2£©ÀûÓòÎÊý·½³Ì£¬½áºÏÈý½Çº¯Êý֪ʶ£¬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨1£©$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µÃ$\frac{1}{2}¦Ñcos¦È-\frac{{\sqrt{3}}}{2}¦Ñsin¦È=3$£¬
¹ÊÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$x-\sqrt{3}y-6=0$£¬
µãQµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£®
£¨2£©ÉèP£¨12cos¦È£¬4sin¦È£©£¬¹ÊPQÖеãM£¨2+6cos¦È£¬2+2sin¦È£©£¬C2µÄÖ±Ïß·½³ÌΪ$x-\sqrt{3}y-6=0$£¬
µãMµ½C2µÄ¾àÀë$d=\frac{{|2+6cos¦È-\sqrt{3}£¨2+2sin¦È£©-6|}}{2}$=$|3cos¦È-\sqrt{3}sin¦È-2-\sqrt{3}|$
=$|2\sqrt{3}cos£¨¦È+\frac{¦Ð}{6}£©-2-\sqrt{3}|¡Ý|2\sqrt{3}-2-\sqrt{3}|=2-\sqrt{3}$£¬
PQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ$2-\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{a}$lnx+$\frac{1}{2}$x2-£¨1+$\frac{1}{a}$£©x£¬ÆäÖÐa¡Ù0£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Ö¤Ã÷£ºµ±n¡Ý2ʱ£¬$\frac{1}{3ln1+2}+\frac{1}{3ln2+2}+¡­+\frac{1}{3lnn+2}£¾\frac{n}{n+1}$ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª$\overrightarrow{a}$=£¨3£¬-1£©£¬$\overrightarrow{a}$•$\overrightarrow{b}$=-5£¬$\overrightarrow{c}$=x$\overrightarrow{a}$+£¨1-x£©$\overrightarrow{b}$£®
£¨¢ñ£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{c}$£¬ÇóʵÊýxµÄÖµ£»
£¨¢ò£©Èô|$\overrightarrow{b}$|=$\sqrt{5}$£¬Çó|$\overrightarrow{c}$|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êý$f£¨x£©=4cos¦Øxsin£¨{¦Øx-\frac{¦Ð}{6}}£©£¨{¦Ø£¾0}£©$µÄ×îСÕýÖÜÆÚÊǦУ®
£¨1£©Çóº¯Êýf£¨x£©ÔÚÇø¼äx¡Ê£¨0£¬¦Ð£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Çóf£¨x£©ÔÚ$[{\frac{¦Ð}{8}£¬\frac{3¦Ð}{8}}]$ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Èç¹ûÊä³öT=6£¬ÄÇôÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®k£¼32B£®k£¼33C£®k£¼64D£®k£¼65

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèF1£¬F2·Ö±ðΪÍÖÔ²C1£º$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1£¨{a_1}£¾{b_1}£¾0£©$ÓëË«ÇúÏßC2£º$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1£¨{a_2}£¾0£¬{b_2}£¾0£©$µÄ¹«¹²½¹µã£¬ËüÃÇÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãM£¬¡ÏF1MF2=90¡ã£¬ÈôÍÖÔ²µÄÀëÐÄÂÊ${e_1}=\frac{3}{4}$£¬ÔòË«ÇúÏßC2µÄÀëÐÄÂÊe2µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{9}{2}$B£®$\frac{{3\sqrt{2}}}{2}$C£®$\frac{3}{2}$D£®$\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚÈçͼËùʾµÄ³ÌÐòͼÖУ¬Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¬¦Áx¡Ü0}\\{lo{g}_{\frac{1}{2}}x£¬x£¾0}\end{array}\right.$£¬ÔòÊä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®-3B£®$\frac{1}{16}$C£®$\frac{1}{4}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬A¡¢BµÄ¼«×ø±ê·Ö±ðΪA-£¨2£¬0£©¡¢B£¨-1£¬$\sqrt{3}$£©
£¨1£©ÇóÖ±ÏßABµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÔÚÇúÏßCÉÏÇóÒ»µãM£¬Ê¹µãMµ½ABµÄ¾àÀë×î´ó£¬²¢Çó³öЩ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚµ¥µ÷µÝÔöµÄµÈ±ÈÊýÁÐ{an}ÖУ¬a1•a9=64£¬a3+a7=20£¬Çóa11=64£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸