精英家教网 > 高中数学 > 题目详情
15.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A、B的极坐标分别为A-(2,0)、B(-1,$\sqrt{3}$)
(1)求直线AB的直角坐标方程;
(2)在曲线C上求一点M,使点M到AB的距离最大,并求出些最大值.

分析 (1)求出直线的斜率,即可求直线AB的直角坐标方程;
(2)设M(2cosθ,2sinθ)(θ∈(0,2π],M到直线AB的距离d=$\frac{|2\sqrt{3}cosθ+2sinθ+2\sqrt{3}|}{2}$=$\frac{|4sin(θ+\frac{π}{3})+2\sqrt{3}|}{2}$,即可得出结论.

解答 解:(1)由题意A(-2,0),B(-1,-$\sqrt{3}$),∴kAB=-$\sqrt{3}$,
∴直线AB的方程为y-0=-$\sqrt{3}$(x+2),即$\sqrt{3}$x+y+2$\sqrt{3}$=0;
(2)设M(2cosθ,2sinθ)(θ∈(0,2π],M到直线AB的距离d=$\frac{|2\sqrt{3}cosθ+2sinθ+2\sqrt{3}|}{2}$=$\frac{|4sin(θ+\frac{π}{3})+2\sqrt{3}|}{2}$,
∴sin(θ+$\frac{π}{3}$)=1,即$θ=\frac{π}{6}$,dmax=2+$\sqrt{3}$,此时M($\sqrt{3}$,1).

点评 本题考查直线方程,考查参数方程的运用,考查三角函数知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数 f (x)=ex(2x-m),(m∈R).
(1)若函数 f (x)在(-1,+∞)上单调递增,求实数m的取值范围;
(2)当曲线 y=f (x)在x=0处的切线与直线 y=x平行时,设h(x)=f (x)-ax+a,若存在唯一的整数x0使得h(x0)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1:$\left\{\begin{array}{l}x=12cosθ\\ y=4sinθ\end{array}\right.$(参数θ∈R),以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{3}{{cos(θ+\frac{π}{3})}}$,点Q的极坐标为$(4\sqrt{2},\frac{π}{4})$.
(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点Q的直角坐标;
(2)设P为曲线C1上的点,求PQ中点M到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图动直线l:y=b与抛物线y2=4x交于点A,与椭圆$\frac{x^2}{2}+{y^2}$=1交于抛物线右侧的点B,F为抛物线的焦点,则|AF|+|BF|+|AB|的最大值为(  )
A.$3\sqrt{3}$B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),若f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)上有最小值,无最大值,则ω=(  )
A.$\frac{2}{3}$B.$\frac{14}{3}$C.$\frac{26}{3}$D.$\frac{38}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,以正四棱锥V-ABCD的底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB,E为VC中点,正四棱锥的底面边长为2a,高为h,且有cos<$\overrightarrow{BE}$,$\overrightarrow{DE}$>=-$\frac{15}{49}$.
(1)求$\frac{h}{a}$的值;
(2)求二面角B-VC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}(t}\right.$为参数).曲线C的极坐标方程为$ρ=\frac{{\sqrt{2}}}{{\sqrt{1+si{n^2}θ}}}$.
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)设直线C与曲线C交于A,B两点,与x轴的交点为M,求$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,$f(x)+\frac{x}{3}f'(x)>0$,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(-2,2)D.(0,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由8个面围成的几何体,每个面都是正三角形,并且有四个顶点A,B,C,D在同一平面上,ABCD是边长为15的正方形,则该几何体的外接球的体积为(  )
A.1125$\sqrt{2}$πB.3375$\sqrt{2}$πC.450πD.900π

查看答案和解析>>

同步练习册答案