17£®ÒÑÖª$\overrightarrow{a}$=£¨3£¬-1£©£¬$\overrightarrow{a}$•$\overrightarrow{b}$=-5£¬$\overrightarrow{c}$=x$\overrightarrow{a}$+£¨1-x£©$\overrightarrow{b}$£®
£¨¢ñ£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{c}$£¬ÇóʵÊýxµÄÖµ£»
£¨¢ò£©Èô|$\overrightarrow{b}$|=$\sqrt{5}$£¬Çó|$\overrightarrow{c}$|µÄ×îСֵ£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÏòÁ¿µÄ×ø±êÇóµÃ|$\overrightarrow{a}$|£¬½áºÏ$\overrightarrow{a}$¡Í$\overrightarrow{c}$ÁйØÓÚxµÄ·½³ÌÇóµÃxÖµ£»
£¨¢ò£©Çó³ö$|\overrightarrow{c}{|}^{2}$µÄ×îСֵ£¬¿ª·½µÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©¡ß$\overrightarrow{a}$=£¨3£¬-1£©£¬¡à$|\overrightarrow{a}|=\sqrt{10}$£¬
ÓÖ$\overrightarrow{a}$•$\overrightarrow{b}$=-5£¬$\overrightarrow{c}$=x$\overrightarrow{a}$+£¨1-x£©$\overrightarrow{b}$£¬ÇÒ$\overrightarrow{a}$¡Í$\overrightarrow{c}$£¬
¡à$\overrightarrow{a}•\overrightarrow{c}=\overrightarrow{a}•£¨x\overrightarrow{a}+£¨1-x£©\overrightarrow{b}£©=0$£¬
¼´$x|\overrightarrow{a}{|}^{2}+£¨1-x£©\overrightarrow{a}•\overrightarrow{b}=10x-5£¨1-x£©=0$£¬½âµÃ£ºx=$\frac{1}{3}$£»
£¨¢ò£©ÓÉ$\overrightarrow{c}$=x$\overrightarrow{a}$+£¨1-x£©$\overrightarrow{b}$£¬µÃ£º
$|\overrightarrow{c}{|}^{2}=[x\overrightarrow{a}+£¨1-x£©\overrightarrow{b}]^{2}$=${x}^{2}|\overrightarrow{a}{|}^{2}+2x£¨1-x£©\overrightarrow{a}•\overrightarrow{b}+£¨1-x£©^{2}|\overrightarrow{b}{|}^{2}$
=10x2-10x£¨1-x£©+5£¨1-x£©2=5£¨5x2-4x+1£©£®
¡àµ±x=$\frac{2}{5}$ʱ£¬$|\overrightarrow{c}{{|}^{2}}_{min}=1$£¬Ôò|$\overrightarrow{c}$|µÄ×îСֵΪ1£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬ÑµÁ·Á˶þ´Îº¯Êý×îÖµµÄÇ󷨣¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³Â·¿ÚÈËÐкáµÀµÄÐźŵÆÎªºìµÆºÍÂ̵ƽ»Ìæ³öÏÖ£¬ºìµÆ³ÖÐøÊ±¼äΪ40Ã룮ÈôÒ»ÃûÐÐÈË À´µ½¸Ã·¿ÚÓöµ½ºìµÆ£¬ÔòÖÁÉÙÐèÒªµÈ´ý15Ãë²Å³öÏÖÂ̵ƵĸÅÂÊΪ$\frac{5}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ1ΪÕý·½ÐÎABCDµÄ±ß³¤Îª2£¬AC¡ÉBD=O£¬½«Õý·½ÐÎABCDÑØ¶Ô½ÇÏßBDÕÛÆð£¬Ê¹AC=a£¬µÃµ½ÈýÀâ×¶A-BCD£¨Èçͼ2£©
£¨1£©µãEÔÚÀâABÉÏ£¬ÇÒAE=3EB£¬µãFÔÚÀâACÉÏ£¬ÇÒAF=2FC£¬ÇóÖ¤£ºDF¡ÎÆ½ÃæCED
£¨2£©µ±aΪºÎֵʱ£¬ÈýÀâ×¶A-BCDµÄÌå»ý×î´ó£¿²¢Çó³ö×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êý f £¨x£©=ex£¨2x-m£©£¬£¨m¡ÊR£©£®
£¨1£©Èôº¯Êý f £¨x£©ÔÚ£¨-1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©µ±ÇúÏß y=f £¨x£©ÔÚx=0´¦µÄÇÐÏßÓëÖ±Ïß y=xƽÐÐʱ£¬Éèh£¨x£©=f £¨x£©-ax+a£¬Èô´æÔÚΨһµÄÕûÊýx0ʹµÃh£¨x0£©£¼0£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¹ýÔ­µãµÄÖ±ÏßlÓëÔ²C£ºx2+y2-6x+5=0ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒÏß¶ÎABÖеã×ø±êΪ£¨2£¬$\sqrt{2}$£©£¬ÔòÏÒ³¤Îª£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®É躯Êýf'£¨x£©ÊǺ¯Êýf£¨x£©£¨x¡ÊR£©µÄµ¼º¯Êý£¬f£¨0£©=1£¬ÇÒ$f£¨x£©=\frac{1}{3}f'£¨x£©-1$£¬Ôò4f£¨x£©£¾f'£¨x£©µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®$£¨\frac{ln4}{3}£¬+¡Þ£©$B£®$£¨\frac{ln2}{3}£¬+¡Þ£©$C£®$£¨\frac{{\sqrt{3}}}{2}£¬+¡Þ£©$D£®$£¨\frac{{\sqrt{e}}}{3}£¬+¡Þ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬ÓÒ¶¥µã¡¢É϶¥µã·Ö±ðΪA£¬B£¬Ö±ÏßAB±»Ô²O£ºx2+y2=1½ØµÃµÄÏÒ³¤Îª$\frac{2\sqrt{5}}{5}$
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Éè¹ýµãBÇÒбÂÊΪkµÄ¶¯Ö±ÏßlÓëÍÖÔ²CµÄÁíÒ»¸ö½»µãΪM£¬$\overrightarrow{ON}$=¦Ë£¨$\overrightarrow{OB}+\overrightarrow{OM}$£©£¬ÈôµãNÔÚÔ²OÉÏ£¬ÇóÕýʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}x=12cos¦È\\ y=4sin¦È\end{array}\right.$£¨²ÎÊý¦È¡ÊR£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µãQµÄ¼«×ø±êΪ$£¨4\sqrt{2}£¬\frac{¦Ð}{4}£©$£®
£¨1£©½«ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Çó³öµãQµÄÖ±½Ç×ø±ê£»
£¨2£©ÉèPΪÇúÏßC1Éϵĵ㣬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼«×ø±êϵÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣮÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}£¨t}\right.$Ϊ²ÎÊý£©£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+si{n^2}¦È}}}$£®
£¨1£©ÇóÖ±ÏßlµÄÇãб½ÇºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßCÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÓëxÖáµÄ½»µãΪM£¬Çó$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸