精英家教网 > 高中数学 > 题目详情
2.设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且$f(x)=\frac{1}{3}f'(x)-1$,则4f(x)>f'(x)的解集为(  )
A.$(\frac{ln4}{3},+∞)$B.$(\frac{ln2}{3},+∞)$C.$(\frac{{\sqrt{3}}}{2},+∞)$D.$(\frac{{\sqrt{e}}}{3},+∞)$

分析 把已知等式变形,可得3f(x)=f′(x)-3,则f′(x)=3f(x)+3,令f(x)=aebx+c,由f(0)=1,得a+c=1,再由3f(x)=f′(x)-3,得到3aebx+3c=abebx-3,则$\left\{\begin{array}{l}{3a-ab=0}\\{-3-3c=0}\end{array}\right.$,求得a,b,c的值,可得函数解析式,把4f(x)>f'(x)转化为关于x的不等式求解.

解答 解:由$f(x)=\frac{1}{3}f'(x)-1$,得3f(x)=f′(x)-3,
∴f′(x)=3f(x)+3,
令f(x)=aebx+c,
∵f(0)=1,∴a+c=1,
∵3f(x)=f′(x)-3,
∴3aebx+3c=abebx-3,
∴$\left\{\begin{array}{l}{3a-ab=0}\\{-3-3c=0}\end{array}\right.$,解得a=2,b=3,c=-1.
∴f(x)=2e3x-1,
∵4f(x)>f'(x),
∴8e3x-4>6e3x
则e3x>2,即x>$\frac{ln2}{3}$.
∴4f(x)>f'(x)的解集为$(\frac{ln2}{3},+∞)$.
故选:B.

点评 本题考查导数的运算及应用,考查了推理能力与计算能力,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)直接写出C1的普通方程和极坐标方程,直接写出C2的普通方程;
(Ⅱ)点A在C1上,点B在C2上,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设向量$\overrightarrow a$=(x,2),$\overrightarrow b$=(1,-1),且$\overrightarrow a$在$\overrightarrow b$方向上的投影为$\sqrt{2}$,则x的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若抛物线y2=2px的准线经过双曲线x2-y2=2的右焦点,则p的值为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=-5,$\overrightarrow{c}$=x$\overrightarrow{a}$+(1-x)$\overrightarrow{b}$.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{c}$,求实数x的值;
(Ⅱ)若|$\overrightarrow{b}$|=$\sqrt{5}$,求|$\overrightarrow{c}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$
(1)求B的大小;
(2)已知f(x)=cosx(asinx-2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=4cosωxsin({ωx-\frac{π}{6}})({ω>0})$的最小正周期是π.
(1)求函数f(x)在区间x∈(0,π)的单调递增区间;
(2)求f(x)在$[{\frac{π}{8},\frac{3π}{8}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2分别为椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1({a_1}>{b_1}>0)$与双曲线C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1({a_2}>0,{b_2}>0)$的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率${e_1}=\frac{3}{4}$,则双曲线C2的离心率e2的值为(  )
A.$\frac{9}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点M(0,1)和N(-1,m2)(m∈R)的直线的倾斜角α的取值范围是(  )
A.0°≤α<180°B.45°≤α<180°
C.0°≤α≤45°或90°<α<180°D.0°≤α≤45°或90°≤α<180°

查看答案和解析>>

同步练习册答案