12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$
£¨¢ñ£©Ö±½Óд³öC1µÄÆÕͨ·½³ÌºÍ¼«×ø±ê·½³Ì£¬Ö±½Óд³öC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©µãAÔÚC1ÉÏ£¬µãBÔÚC2ÉÏ£¬Çó|AB|µÄ×îСֵ£®

·ÖÎö £¨¢ñ£©°ÑÔ²C1µÄ²ÎÊý·½³Ì±äÐΣ¬Á½Ê½Æ½·½×÷ºÍ¿ÉµÃÆÕͨ·½³Ì£¬½øÒ»²½ÇóµÃ¼«×ø±ê·½³Ì£¬Õ¹¿ªÁ½½ÇºÍµÄÕýÏÒ£¬½áºÏx=¦Ñcos¦È£¬y=¦Ñsin¦È¿ÉµÃC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¿ÉµÃÖ±ÏߺÍÔ²ÏàÀ룬Óɵ㵽ֱÏߵľàÀë¼õÈ¥Ô²µÄ°ë¾¶ÇóµÃ|AB|µÄ×îСֵ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}{x=-2+2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x+2=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬Á½Ê½Æ½·½×÷ºÍµÃ£º£¨x+2£©2+y2=4£¬
C1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-4cos¦È£¬
ÓɦÑsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¬µÃ$¦Ñsin¦Ècos\frac{¦Ð}{4}+¦Ñcos¦Èsin\frac{¦Ð}{4}=2\sqrt{2}$£¬
¼´$\frac{\sqrt{2}}{2}¦Ñsin¦È+\frac{\sqrt{2}}{2}¦Ñcos¦È=2\sqrt{2}$£¬
µÃx+y-4=0£®
£¨¢ò£©C1ÊÇÒԵ㣨-2£¬0£©ÎªÔ²ÐÄ£¬°ë¾¶Îª2µÄÔ²£¬C2ÊÇÖ±Ïߣ®
Ô²Ðĵ½Ö±ÏßC2µÄ¾àÀëΪ$\frac{|-2+0-4|}{\sqrt{2}}=3\sqrt{2}$£¾2£¬Ö±ÏߺÍÔ²ÏàÀ룮
¡à|AB|µÄ×îСֵΪ$3\sqrt{2}-2$£®

µãÆÀ ±¾Ì⿼²é½âµÃÇúÏߵļ«×ø±ê·½³Ì£¬¿¼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬ÑµÁ·ÁËÖ±ÏßÓëԲλÖùØÏµµÄÓ¦Óã¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êý$f£¨x£©=cos£¨¦Øx+\frac{¦Ð}{6}£©£¨¦Ø£¾0£©$µÄ×îСÕýÖÜÆÚÊǦУ¬ÔòÆäͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºóµÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©
A£®$[{-\frac{¦Ð}{4}+k¦Ð£¬\frac{¦Ð}{4}+k¦Ð}]£¨k¡ÊZ£©$B£®$[{\frac{¦Ð}{4}+k¦Ð£¬\frac{3¦Ð}{4}+k¦Ð}]£¨k¡ÊZ£©$
C£®$[{\frac{¦Ð}{12}+k¦Ð£¬\frac{7¦Ð}{12}+k¦Ð}]£¨k¡ÊZ£©$D£®$[{-\frac{5¦Ð}{12}+k¦Ð£¬\frac{¦Ð}{12}+k¦Ð}]£¨k¡ÊZ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬MÊDZßBCµÄÖе㣬tan¡ÏBAM=$\frac{\sqrt{3}}{5}$£¬cos¡ÏAMC=-$\frac{2\sqrt{7}}{7}$
£¨¢ñ£©Çó½ÇBµÄ´óС£»
£¨¢ò£©Èô½Ç¡ÏBAC=$\frac{¦Ð}{6}$£¬BC±ßÉϵÄÖÐÏßAMµÄ³¤Îª$\sqrt{7}$£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Éèµ±x=¦Áʱ£¬º¯Êýf£¨x£©=3sinx+cosxÈ¡µÃ×î´óÖµ£¬Ôòtan2¦Á=$-\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³Â·¿ÚÈËÐкáµÀµÄÐźŵÆÎªºìµÆºÍÂ̵ƽ»Ìæ³öÏÖ£¬ºìµÆ³ÖÐøÊ±¼äΪ40Ã룮ÈôÒ»ÃûÐÐÈË À´µ½¸Ã·¿ÚÓöµ½ºìµÆ£¬ÔòÖÁÉÙÐèÒªµÈ´ý15Ãë²Å³öÏÖÂ̵ƵĸÅÂÊΪ$\frac{5}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµãM£¨2$\sqrt{2}$£¬$\frac{2\sqrt{3}}{3}$£©ÔÚÍÖÔ²G£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏ£¬ÇÒµãMµ½Á½½¹µã¾àÀëÖ®ºÍΪ4$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨2£©ÈôбÂÊΪ1µÄÖ±ÏßlÓëÍÖÔ²G½»ÓÚA£¬BÁ½µã£¬ÒÔABΪµ××÷µÈÑüÈý½ÇÐΣ¬¶¥µãΪP£¨-3£¬2£©£¬Çó¡÷PABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èô¹ØÓÚxµÄ²»µÈʽxex-2ax+a£¼0µÄ·Ç¿Õ½â¼¯ÖÐÎÞÕûÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{2}{5{e}^{2}}$£¬$\frac{1}{3e}$£©B£®[$\frac{1}{3e}$£¬$\frac{\sqrt{e}}{4e}$£©C£®[$\frac{1}{3e}$£¬e]D£®[$\frac{\sqrt{e}}{4e}$£¬e]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=e2£¬g£¨x£©=x2+ax-2a2+3a£¬£¨a¡ÊR£©£¬¼Çº¯Êýh£¨x£©=g£¨x£©•f£¨x£©£®
£¨1£©ÌÖÂÛº¯Êýh£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©ÊԱȽÏef£¨x-2£©ÓëxµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®É躯Êýf'£¨x£©ÊǺ¯Êýf£¨x£©£¨x¡ÊR£©µÄµ¼º¯Êý£¬f£¨0£©=1£¬ÇÒ$f£¨x£©=\frac{1}{3}f'£¨x£©-1$£¬Ôò4f£¨x£©£¾f'£¨x£©µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®$£¨\frac{ln4}{3}£¬+¡Þ£©$B£®$£¨\frac{ln2}{3}£¬+¡Þ£©$C£®$£¨\frac{{\sqrt{3}}}{2}£¬+¡Þ£©$D£®$£¨\frac{{\sqrt{e}}}{3}£¬+¡Þ£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸