精英家教网 > 高中数学 > 题目详情
17.已知点M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,且点M到两焦点距离之和为4$\sqrt{3}$.
(1)求椭圆G的方程;
(2)若斜率为1的直线l与椭圆G交于A,B两点,以AB为底作等腰三角形,顶点为P(-3,2),求△PAB的面积.

分析 (1)由2a=4$\sqrt{3}$,可得a=2$\sqrt{3}$.又点M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在椭圆G上,可得$\frac{2}{3}+\frac{4}{3{b}^{2}}$=1,解得b2,即可得出.
(2)设直线l的方程为y=x+m,与椭圆方程联立得4x2+6mx+3m2-12=0.设A(x1,y1),B(x2,y2)(x1<x2),AB的中点为E(x0,y0),利用中档坐标公式可得E坐标.因为AB是等腰△PAB的底边,所以PE⊥AB.解得m.利用两点之间的距离公式可得|AB|.点P(-3,2)到直线AB:x-y+2=0的距离d,可得△PAB的面积S=$\frac{1}{2}$|AB|•d.

解答 解:(1)∵2a=4$\sqrt{3}$,∴a=2$\sqrt{3}$.
又点M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在椭圆G上,∴$\frac{2}{3}+\frac{4}{3{b}^{2}}$=1,解得b2=4,…(4分)
∴椭圆G的方程为:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1.…(5分)
(2)设直线l的方程为y=x+m,由$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得4x2+6mx+3m2-12=0.①
设A(x1,y1),B(x2,y2)(x1<x2),AB的中点为E(x0,y0),
则x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{3m}{4}$,y0=x0+m=$\frac{m}{4}$.
因为AB是等腰△PAB的底边,所以PE⊥AB.
所以PE的斜率k=$\frac{2-\frac{m}{4}}{-3+\frac{3m}{4}}$=-1,解得m=2.…(10分)
此时方程①为4x2+12x=0,解得x1=-3,x2=0,
所以y1=-1,y2=2.
所以|AB|=3$\sqrt{2}$.
此时,点P(-3,2)到直线AB:x-y+2=0的距离d=$\frac{|-3-2+2|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
所以△PAB的面积S=$\frac{1}{2}$|AB|•d=$\frac{9}{2}$.…(12分)

点评 本题考查了椭圆的标准方程及其性质、等腰三角形的性质、相互垂直的直线斜率之间的关系、点到直线的距离公式、两点之间的距离公式、三角形面积计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.△ABC内一点O满足$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=0$,直线AO交BC于点D,则(  )
A.$2\overrightarrow{DB}+3\overrightarrow{DC}=0$B.$3\overrightarrow{DB}+2\overrightarrow{DC}=0$C.$\overrightarrow{OA}-5\overrightarrow{OD}=0$D.$5\overrightarrow{OA}+\overrightarrow{OD}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+m|+|2x-1|(m∈R)
(I)当m=-1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[$\frac{3}{4}$,2]⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)直接写出C1的普通方程和极坐标方程,直接写出C2的普通方程;
(Ⅱ)点A在C1上,点B在C2上,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①已知a,b是两条不重合的直线,α,β是两个相交的平面,若a,b在平面α内的射影是两条相交直线,a,b在平面β内的射影是两条平行直线,则a,b是两条异面直线;
②用一个平面取截一个正方体,截面图象可能是三角形、四边形、五边形、六边形;
③已知矩形ABCD顶点都在表面积为64π的球O的球面上,且AB=6,BC=2$\sqrt{3}$,则棱锥O-ABCD的体积为24$\sqrt{3}$;
④与正方体ABCD-A1B1C1D1的三条棱AB,CC1,A1D1所在直线距离都相等的点有且仅有1个,
其中所有正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义在R上的函数满足f(x)+2f′(x)>0恒成立,且f(2)=$\frac{1}{e}$(e为自然对数的底数),则不等式ex•f(x)-e${\;}^{\frac{x}{2}}$>0的解集为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$
(1)求B的大小;
(2)已知f(x)=cosx(asinx-2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案