精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C的对边分别为a,b,c,且(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$
(1)求B的大小;
(2)已知f(x)=cosx(asinx-2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

分析 (1)根据向量的数量积定义和三角恒等变换化简即可求出cosB,得出B的值;
(2)化简f(x)的解析式,根据f(B)为f(x)的最大值求出f(x)的解析式,利用正弦函数的单调区间列不等式解出.

解答 解:(1)∵(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$,即(c-2a)accos(π-B)=abccosC,
∴2accosB=bcosC+ccosB,∴2sinAcosB=sinBcosC+sinCcosB,
∴2sinAcosB=sin(B+C)=sinA,
∴cosB=$\frac{1}{2}$,∴B=$\frac{π}{3}$.
(2)f(x)=cosx(asinx-2cosx)+1=$\frac{a}{2}$sin2x-cos2x=$\sqrt{\frac{{a}^{2}}{4}+1}$sin(2x-φ),
∵对任意的x∈R,都有f(x)≤f(B)=f($\frac{π}{3}$),
∴sin($\frac{2π}{3}$-φ)=1,∴φ=$\frac{π}{6}$,
∴f(x)=$\sqrt{\frac{{a}^{2}}{4}+1}$sin(2x-$\frac{π}{6}$),
令$\frac{π}{2}+2kπ$$≤2x-\frac{π}{6}$$≤\frac{3π}{2}+2kπ$,解得$\frac{π}{3}+kπ$≤x≤$\frac{5π}{6}$+kπ,k∈Z.
∴函数f(x)的单调递减区间是[$\frac{π}{3}+kπ$,$\frac{5π}{6}$+kπ],k∈Z.

点评 本题考查了平面向量的数量积,三角函数的恒等变换,正弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,且点M到两焦点距离之和为4$\sqrt{3}$.
(1)求椭圆G的方程;
(2)若斜率为1的直线l与椭圆G交于A,B两点,以AB为底作等腰三角形,顶点为P(-3,2),求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a+blnx}{x-1}$(a,b∈R)在点 (2,f (2)) 处切线的斜率为-$\frac{1}{2}$-ln 2,且函数过点(4,$\frac{1+2ln2}{3}$).
(Ⅰ)求a、b 的值及函数 f (x)的单调区间;
(Ⅱ)若g(x)=$\frac{k}{x}$(k∈N*),对任意的实数x0>1,都存在实数x1,x2满足0<x1<x2<x0,使得f(x0)=f(x1)=f(x2),求k 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等腰三角形ABC中,底边BC=3,∠BAC=120°,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若P是BC边上的中点,则$\overrightarrow{AP}$•$\overrightarrow{AD}$的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且$f(x)=\frac{1}{3}f'(x)-1$,则4f(x)>f'(x)的解集为(  )
A.$(\frac{ln4}{3},+∞)$B.$(\frac{ln2}{3},+∞)$C.$(\frac{{\sqrt{3}}}{2},+∞)$D.$(\frac{{\sqrt{e}}}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知m∈R,命题p:对任意实数x,不等式x2-2x-1≥m2-3m恒成立,若¬p为真命题,则m的取值范围是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线方程为$\frac{x^2}{{{m^2}+4}}-\frac{y^2}{b^2}=1$,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是(  )
A.$(1,\frac{{\sqrt{6}}}{2}]$B.$[\frac{{\sqrt{6}}}{2},+∞)$C.$(1,\frac{{\sqrt{6}}}{2})$D.$(\frac{{\sqrt{6}}}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{e^x}{x}$.
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设G(x)=xf(x)-lnx-2x,证明$G(x)>-ln2-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(1)求f(x)的定义域,值域;
(2)讨论函数f(x)的单调性,并加以证明.

查看答案和解析>>

同步练习册答案