精英家教网 > 高中数学 > 题目详情
19.已知双曲线方程为$\frac{x^2}{{{m^2}+4}}-\frac{y^2}{b^2}=1$,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是(  )
A.$(1,\frac{{\sqrt{6}}}{2}]$B.$[\frac{{\sqrt{6}}}{2},+∞)$C.$(1,\frac{{\sqrt{6}}}{2})$D.$(\frac{{\sqrt{6}}}{2},+∞)$

分析 由题意,通径为$\frac{2{b}^{2}}{a}$=2,a≥2,可得b=$\sqrt{a}$,利用e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{1}{a}}$≤$\frac{\sqrt{6}}{2}$,e>1,即可得出结论.

解答 解:由题意,$\frac{2{b}^{2}}{a}$=2,a≥2
∴b=$\sqrt{a}$,
∴e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{1}{a}}$≤$\frac{\sqrt{6}}{2}$,
∵e>1,
∴1<e≤$\frac{\sqrt{6}}{2}$,
故选A.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①已知a,b是两条不重合的直线,α,β是两个相交的平面,若a,b在平面α内的射影是两条相交直线,a,b在平面β内的射影是两条平行直线,则a,b是两条异面直线;
②用一个平面取截一个正方体,截面图象可能是三角形、四边形、五边形、六边形;
③已知矩形ABCD顶点都在表面积为64π的球O的球面上,且AB=6,BC=2$\sqrt{3}$,则棱锥O-ABCD的体积为24$\sqrt{3}$;
④与正方体ABCD-A1B1C1D1的三条棱AB,CC1,A1D1所在直线距离都相等的点有且仅有1个,
其中所有正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若抛物线y2=2px的准线经过双曲线x2-y2=2的右焦点,则p的值为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$
(1)求B的大小;
(2)已知f(x)=cosx(asinx-2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=4cosωxsin({ωx-\frac{π}{6}})({ω>0})$的最小正周期是π.
(1)求函数f(x)在区间x∈(0,π)的单调递增区间;
(2)求f(x)在$[{\frac{π}{8},\frac{3π}{8}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在三棱柱ABC-A1B1C1中,已知侧面ABB1A1是菱形,侧面BCC1B1是正方形,点A1在底面ABC的投影为AB的中点D.
(1)证明:平面AA1B1B⊥平面BB1C1C;
(2)设P为B1C1上一点,且$\overrightarrow{{B_1}P}=\frac{1}{3}\overrightarrow{{B_1}{C_1}}$,求二面角A1-AB-P的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2分别为椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1({a_1}>{b_1}>0)$与双曲线C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1({a_2}>0,{b_2}>0)$的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率${e_1}=\frac{3}{4}$,则双曲线C2的离心率e2的值为(  )
A.$\frac{9}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某个路口交通指示灯,红灯时间为30秒,黄灯时间为10秒,绿灯时间为40秒,黄灯时间可以通行,当你到达路口时,等待时间不超过10秒就可以通行的概率为(  )
A.$\frac{3}{4}$B.$\frac{4}{7}$C.$\frac{5}{7}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若对?x∈R,kx2-kx-1<0是真命题,则k的取值范围是(  )
A.-4≤k≤0B.-4≤k<0C.-4<k≤0D.-4<k<0

查看答案和解析>>

同步练习册答案