精英家教网 > 高中数学 > 题目详情
20.若对?x∈R,kx2-kx-1<0是真命题,则k的取值范围是(  )
A.-4≤k≤0B.-4≤k<0C.-4<k≤0D.-4<k<0

分析 对k=0与k<0,k>0,分别利用?x∈R,kx2-kx-1<0是真命题,求出k的范围.

解答 解:当k=o时,对?x∈R,kx2-kx-1<0,-1<0即是真命题,成立.
当k<0时,对?x∈R,kx2-kx-1<0是真命题,必有△=(-k)2+4k<0,
解得,-4<k<0,
当k>0时,对?x∈R,kx2-kx-1<0是真命题,显然不成立.
综上,-4<k≤0.
故选:C.

点评 本题考查不等式的解法,恒成立问题,考查转化思想,分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知双曲线方程为$\frac{x^2}{{{m^2}+4}}-\frac{y^2}{b^2}=1$,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是(  )
A.$(1,\frac{{\sqrt{6}}}{2}]$B.$[\frac{{\sqrt{6}}}{2},+∞)$C.$(1,\frac{{\sqrt{6}}}{2})$D.$(\frac{{\sqrt{6}}}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,以正四棱锥V-ABCD的底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB,E为VC中点,正四棱锥的底面边长为2a,高为h,且有cos<$\overrightarrow{BE}$,$\overrightarrow{DE}$>=-$\frac{15}{49}$.
(1)求$\frac{h}{a}$的值;
(2)求二面角B-VC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(1)求f(x)的定义域,值域;
(2)讨论函数f(x)的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,$f(x)+\frac{x}{3}f'(x)>0$,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(-2,2)D.(0,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10$\sqrt{3}$,则AB=(  )
A.8B.6C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的前n项和为Sn,若a3=4,S3=7,则S6的值为(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若三条直线ax+y+1=0,y=3x,x+y=4,交于一点,则a的值为(  )
A.4B.-4C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-6x2+9x,g(x)=$\frac{1}{3}$x3-$\frac{a+1}{2}$x2+ax-$\frac{1}{3}$(a>1)若对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),则实数a的取值范围为(  )
A.(1,$\frac{9}{4}$]B.[9,+∞)C.(1,$\frac{9}{4}$]∪[9,+∞)D.[$\frac{3}{2}$,$\frac{9}{4}$]∪[9,+∞)

查看答案和解析>>

同步练习册答案