精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10$\sqrt{3}$,则AB=(  )
A.8B.6C.5D.10

分析 由已知可得:AC=$\frac{5}{8}$AB,进而利用三角形面积公式即可计算得解AB的值.

解答 解:∵AB:AC=8:5,可得:AC=$\frac{5}{8}$AB,
又∵∠A=60°,面积为10$\sqrt{3}$=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×$AB×$\frac{5}{8}$AB×$\frac{\sqrt{3}}{2}$,
∴解得:AB=8.
故选:A.

点评 本题主要考查了三角形面积公式在解三角形中的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在三棱柱ABC-A1B1C1中,已知侧面ABB1A1是菱形,侧面BCC1B1是正方形,点A1在底面ABC的投影为AB的中点D.
(1)证明:平面AA1B1B⊥平面BB1C1C;
(2)设P为B1C1上一点,且$\overrightarrow{{B_1}P}=\frac{1}{3}\overrightarrow{{B_1}{C_1}}$,求二面角A1-AB-P的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=4,an+1=qan+d(q,d为常数).
(1)当q=1,d=2时,求a2017的值;
(2)当q=3,d=-2时,记${b_n}=\frac{1}{{{a_n}-1}}$,Sn=b1+b2+b3+…+bn,证明:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.高二某班共有学生60人,座号分别为1,2,3,…,60现根据座号,用系统抽样的方法,抽取一个容量为5的样本.已知4号、28号、40号、52号同学在样本中,那么样本中还有一个同学的座号是(  )
A.14B.16C.36D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若对?x∈R,kx2-kx-1<0是真命题,则k的取值范围是(  )
A.-4≤k≤0B.-4≤k<0C.-4<k≤0D.-4<k<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果a<b<0,则下列不等式成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a-c<b-cC.ac2<bc2D.a2<b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF2|=|F1F2|,且|QF2|=2|PF2|,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{7}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{\sqrt{5-ax}}{a-2}$(a∈A),若f(x)在区间(0,1]上是减函数,则集合A可以是(  )
A.(-∞,0)B.[1,2)C.(-1,5]D.[4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x>0时,f(x)=$\frac{12}{x}$+4x的最小值为(  )
A.8$\sqrt{3}$B.8C.16D.4

查看答案和解析>>

同步练习册答案