精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(1)求f(x)的定义域,值域;
(2)讨论函数f(x)的单调性,并加以证明.

分析 (1)定义域易得,利用反解自变量的方法求值域即可.
(2)先把函数分离常数,在分底数和1的大小两种情况再结合复合函数的单调性来判断即可.

解答 解:(1)易得f(x)的定义域为{x|x∈R}.
设y=$\frac{{a}^{x}-1}{{a}^{x}+1}$,解得ax=-$\frac{y+1}{y-1}$①
∵ax>0当且仅当-$\frac{y+1}{y-1}$>0时,方程①有解.解-$\frac{y+1}{y-1}$>0得-1<y<1.
∴f(x)的值域为{y|-1<y<1}.
(2)f(x)=1-$\frac{2}{{a}^{x}+1}$,
1°当a>1时,∵ax+1为增函数,且ax+1>0,
∴$\frac{2}{{a}^{x}+1}$为减函数,从而f(x)为增函数,
2°当0<a<1时,类似地可得f(x)为减函数;
证明如下:
设x1<x2
则f(x1)-f(x2)=1-$\frac{2}{{a}^{{x}_{1}}+1}$-1+$\frac{2}{{a}^{{x}_{2}}+1}$=$\frac{2{(a}^{{x}_{1}}{-a}^{{x}_{2}})}{{(a}^{{x}_{1}}+1){(a}^{{x}_{2}}+1)}$,
0<a<1时,由x1<x2,得:${a}^{{x}_{1}}$>${x}^{{x}_{2}}$,
故f(x1)>f(x2),f(x)是减函数,
a>1时,由x1<x2,得:${a}^{{x}_{1}}$<${x}^{{x}_{2}}$,
故f(x1)<f(x2),f(x)是增函数.

点评 本题是对函数定义域和值域以及单调性的综合考查.在利用复合函数的单调性时,其原则是;单调性相同为增,单调性相反为减,且乘正数单调性不变,乘负数单调性相反.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$
(1)求B的大小;
(2)已知f(x)=cosx(asinx-2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某个路口交通指示灯,红灯时间为30秒,黄灯时间为10秒,绿灯时间为40秒,黄灯时间可以通行,当你到达路口时,等待时间不超过10秒就可以通行的概率为(  )
A.$\frac{3}{4}$B.$\frac{4}{7}$C.$\frac{5}{7}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=4,an+1=qan+d(q,d为常数).
(1)当q=1,d=2时,求a2017的值;
(2)当q=3,d=-2时,记${b_n}=\frac{1}{{{a_n}-1}}$,Sn=b1+b2+b3+…+bn,证明:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点M(0,1)和N(-1,m2)(m∈R)的直线的倾斜角α的取值范围是(  )
A.0°≤α<180°B.45°≤α<180°
C.0°≤α≤45°或90°<α<180°D.0°≤α≤45°或90°≤α<180°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.高二某班共有学生60人,座号分别为1,2,3,…,60现根据座号,用系统抽样的方法,抽取一个容量为5的样本.已知4号、28号、40号、52号同学在样本中,那么样本中还有一个同学的座号是(  )
A.14B.16C.36D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若对?x∈R,kx2-kx-1<0是真命题,则k的取值范围是(  )
A.-4≤k≤0B.-4≤k<0C.-4<k≤0D.-4<k<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF2|=|F1F2|,且|QF2|=2|PF2|,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{7}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,则PB与平面PCD所成角的正弦值为(  )
A.$\frac{\sqrt{42}}{7}$B.$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步练习册答案