精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=4x2-1,若数列{${\frac{1}{f(n)$}前n项和为Sn,则S2018的值为(  )
A.$\frac{2017}{2018}$B.$\frac{2016}{2018}$C.$\frac{4036}{4037}$D.$\frac{2018}{4037}$

分析 使用裂项法得出$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$),进而计算出S2018

解答 解:$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$).
∴S2018=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}-\frac{1}{5}$)+$\frac{1}{2}$($\frac{1}{5}-\frac{1}{7}$)+…+$\frac{1}{2}$($\frac{1}{4035}$-$\frac{1}{4037}$)
=$\frac{1}{2}$(1-$\frac{1}{3}+\frac{1}{3}$-$\frac{1}{5}+\frac{1}{5}$+…+$\frac{1}{4035}$-$\frac{1}{4037}$)
=$\frac{1}{2}$(1-$\frac{1}{4037}$)
=$\frac{2018}{4037}$.
故选D.

点评 本题考查了裂项法数列求和,根据数列特点选择合理的求和方法是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=ax2+ax-1对?x∈R都有f(x)<0恒成立,则实数a的取值范围是(  )
A.-4<a≤0B.a<-4C.-4<a<0D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{1}{2}a{x^2}$-(2a+1)x+2lnx.
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求实数a的值;
(2)求f(x)单调区间;
(3)设g(x)=x2-2x,若对任意的x1∈(0,2],存在x2∈[0,2],使f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sinx=$\frac{3}{5}$,其中0≤x≤$\frac{π}{2}$.
(1)求cosx,tanx的值;
(2)求$\frac{sin(-x)}{{cos(\frac{π}{2}-x)+cos(2π-x)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中,A=$\frac{π}{6}$,b=2,以下错误的是(  )
A.若a=1,则c有一解B.若a=$\sqrt{3}$,则c有两解
C.若a=$\frac{11}{6}$,则c有两解D.若a=3,则c有两解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线xy=1的一个参数方程是(  )
A.$\left\{\begin{array}{l}x={t^{\frac{1}{2}}}\\ y={t^{-\frac{1}{2}}}\end{array}\right.$B.$\left\{\begin{array}{l}x={2^t}\\ y={2^{-t}}\end{array}\right.$
C.$\left\{\begin{array}{l}x=log_2t\\ y=log_t2\end{array}\right.$D.$\left\{\begin{array}{l}x=sinα\\ y=\frac{1}{sinα}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=$\frac{1}{{{4^x}+2}}$,利用课本中推导等差数列前n项和公式的方法,可求得f($\frac{1}{10}$)+f($\frac{2}{10}$)+…+f($\frac{9}{10}$)=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=2x的参数方程是(  )
A.$\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=2\sqrt{t}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=tanθ}\\{y=2tanθ}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)函数f(x)=ax2+bx满足:1≤f(1)≤2,2≤f(-2)≤4,求f(-1)的取值范围.
(2)若不等式ax2-ax+1≥0对x∈R恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案