精英家教网 > 高中数学 > 题目详情
20.设f(x)=$\frac{1}{{{4^x}+2}}$,利用课本中推导等差数列前n项和公式的方法,可求得f($\frac{1}{10}$)+f($\frac{2}{10}$)+…+f($\frac{9}{10}$)=$\frac{9}{4}$.

分析 先考察函数f(x)具有的性质:若a+b=1,则f(a)+f(b)=$\frac{1}{2}$,由此可求答案.

解答 解:设a+b=1,则f(a)+f(b)=$\frac{1}{{4}^{a}+2}$+$\frac{1}{{4}^{b}+2}$=$\frac{1}{{4}^{a}+2}$+$\frac{1}{{4}^{1-a}+2}$
=$\frac{1}{{4}^{a}+2}$+$\frac{{4}^{a}}{4+2•{4}^{a}}$=$\frac{1}{2}$.
所以f($\frac{1}{10}$)+f($\frac{9}{10}$)=$\frac{1}{2}$,f($\frac{2}{10}$)+f($\frac{8}{10}$)=$\frac{1}{2}$,…,
∴f($\frac{1}{10}$)+f($\frac{2}{10}$)+…+f($\frac{9}{10}$)=$\frac{1}{2}$×(9×$\frac{1}{2}$)=$\frac{9}{4}$.
故答案为:$\frac{9}{4}$.

点评 本题考查根据数列是特殊的函数,根据函数具有的性质,来解决数列的和问题,利用的是倒序相加法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数f(x)的定义域为R,f(-x)=f(x),f(x)=f(2-x),当x∈[0,1]时,f(x)=x3.则函数g(x)=|cos(πx)|-f(x)在区间[-$\frac{1}{2}$,$\frac{5}{2}$]上的所有零点的和为(  )
A.7B.6C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.
(1)求sinA的值;
(2)若a=2,△ABC的面积S=$\frac{{\sqrt{2}}}{2}$,且b>c,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=4x2-1,若数列{${\frac{1}{f(n)$}前n项和为Sn,则S2018的值为(  )
A.$\frac{2017}{2018}$B.$\frac{2016}{2018}$C.$\frac{4036}{4037}$D.$\frac{2018}{4037}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在正方体ABCD-A1B1C1D1中,M,N是棱A1B1,B1B的中点,求异面直线AM和CN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+(b-1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且对任意x∈R,都有f(2-x)=f(2+x),求f(x)的解析式;
(2)已知x1,x2为函数f(x)的两个零点,且x2-x1=2,当x∈(x1,x2)时,g(x)=-f(x)+2(x2-x)的最大值为h(a),当a≥2时,求h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图是在求:S=1+$\frac{1}{2}$+$\frac{1}{2^2}$+$\frac{1}{2^3}$+…+的一个程序框图.
(1)在程序框图的①处填上适当的语句.
(2)写出相应的程序.
答:(1)T=T/2;
(2)S=0
I=0
T=1
DO
S=S+T
T=T/2
I=I+1
LOOPUNTILI>9
PRINTS
END.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与y=|x|为同一函数的是(  )
A.y=($\sqrt{x}$)2B.y=a${\;}^{{{log}_a}x}}$C.y=$\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}$D.y=$\sqrt{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2+2t}\\{y=1-t}\end{array}\right.$(t为参数),椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),试在椭圆C上求一点P,使得点P到直线l的距离最小.

查看答案和解析>>

同步练习册答案