精英家教网 > 高中数学 > 题目详情
4.在数列{an}中,a3=12,a11=-5,且任意连续三项的和均为11,则a2017=4;设Sn是数列{an}的前n项和,则使得Sn≤100成立的最大整数n=29.

分析 将an+an+1+an+2=11中n换为n+1,可得数列{an}是周期为3的数列.求出a2=-5,a1=4,即可得到a2017=a1,讨论n为3的倍数或余1或余2,计算n的最大值,即可得到所求值.

解答 解:由题意可得an+an+1+an+2=11,
将n换为an+1+an+2+an+3=11,
可得an+3=an
可得数列{an}是周期为3的数列.
a3=12,a11=-5,即有a2=-5,a1=11-12+5=4,
可得a2017=a3×672+1=a1=4;
当n=3k,k为自然数,时,Sn=11k;
当n=3k+1,k为自然数时,Sn=11k+4;
当n=3k+2,k为自然数时,Sn=11k+4-5=11k-1;
使得Sn≤100成立,
由11k≤100,可得k的最大值为9,此时n=27;
由11k+4≤100,可得k的最大值为8,此时n=25;
由11k-1≤100,可得k的最大值为9,此时n=29.
则使得Sn≤100成立的最大整数n为29.
故答案为:4,29.

点评 本题考查了数列的周期性、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q等于(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)为二次函数,满足f(0)=1,且f(x+1)-f(x)=2x.
(1)求函数f(x)的解析式;
(2)若方程f(2x)=2x+a在x∈(-∞,2]上有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数$f(x)=\left\{\begin{array}{l}-\frac{1}{x},x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,则f(f(-2))=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,S4=-24,a1+a5=-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设集合A={n∈N*|Sn≤-24},求集合A中的所有元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.3B.$\frac{9}{5}$C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线$y=\frac{1}{4}{x^2}$的焦点坐标为(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=1-2i(i是虚数单位)的共轭复数为$\overline{z}$,则$\frac{5}{z}$+$\overline{z}$2=(  )
A.2+6iB.2-4iC.-2+6iD.-3-6i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若对任意的实数x,总存在y∈[2,3],使得不等式x2+xy+y2≥k(y-1)成立,则实数k的最大值为3.

查看答案和解析>>

同步练习册答案